Show simple item record

dc.contributor.advisorVourdas, Apostolos
dc.contributor.authorHadhrami, Hilal Al*
dc.date.accessioned2010-03-03T16:40:13Z
dc.date.available2010-03-03T16:40:13Z
dc.date.issued2010-03-03T16:40:13Z
dc.identifier.urihttp://hdl.handle.net/10454/4250
dc.description.abstractQuantum systems with finite Hilbert space where position x and momentum p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations S(2¿,Z(p)) in ¿-partite finite quantum systems are studied and constructed explicitly. Examples of applying such simple method is given for the case of bi-partite and tri-partite systems. The quantum correlations between the sub-systems after applying these transformations are discussed and quantified using various methods. An extended phase-space x¿p¿X¿P where X, P ¿ Z(d) are position increment and momentum increment, is introduced. In this phase space the extended Wigner and Weyl functions are defined and their marginal properties are studied. The fourth order interference in the extended phase space is studied and verified using the extended Wigner function. It is seen that for both pure and mixed states the fourth order interference can be obtained.en
dc.description.sponsorshipMinistry of Higher Education, Sultanate of Omanen
dc.language.isoenen
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.en
dc.subjectPhase space methodsen
dc.subjectFinite quantum systemsen
dc.subjectFinite Hilbert spaceen
dc.subjectSymplectic tranformationsen
dc.subjectBi-partite and tri-partite systemsen
dc.subjectWigner functionen
dc.titlePhase space methods in finite quantum systems.en
dc.type.qualificationleveldoctoralen
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentDepartment of Computingen
dc.typeThesiseng
dc.type.qualificationnamePhDen
dc.date.awarded2009
refterms.dateFOA2018-07-18T23:06:40Z


Item file(s)

Thumbnail
Name:
Thesis_Hadhrami.pdf
Size:
1.324Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record