BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Binary gas adsorption on molecular sieves. Experimental data for the adsorption of oxygen, nitrogen and oxygen-nitrogen mixtures on five molecular sieve adsorbents at various temperatures and pressures and a comparison with theoretical models.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Sorial.pdf (8.882Mb)
    Download
    Publication date
    2010-01-21T16:40:39Z
    Author
    Sorial, George Ayad
    Supervisor
    Granville, W.H.
    Keyword
    Adsorption
    Adsorption equilibria
    Oxygen
    Nitrogen
    Oxygen-Nitrogen mixtures
    Mathematical models
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Postgraduate School of Studies in Chemical Engineering.
    Awarded
    1982
    
    Metadata
    Show full item record
    Abstract
    A study of adsorption equilibria of oxygen, nitrogen and oxygen-nitrogen mixtures on types 4A, 5A, 13X and Na-Mordenite molecular sieve pellets has been made. Pure component isotherms, using a volumetric apparatus, have been measured for each gas on each adsorbent at pressures up to 9 bar and for temperatures of 278.15,293.15 and 303.15 K. Curve fitting of the pure canponent isotherms has been attempted using the kinetic model of Gonzalez and Holland, the vacancy solution model, the statistical thermodynamic model and a mathematical equation similar to the Hill-de Boer model. With the exception of the kinetic model, good curve fitting was obtained. Binary equilibria data have been measured, using a constant volume method, for mixtures of oxygen and nitrogen at pressures of 1.7 and 4.4 bar and at temperatures of 278.15,293.15 and 303.15 K for each of the adsorbents. These results have been presented graphically as equilibrium phase compositions and corresponding total adsorption loadings. The binary experimental equilibria data have been examined against values predicted by mixture models (kinetic model, the extended vacancy solution model, the statistical thermodynamic model, the Cook and Basmadjian model, and the ideal adsorbed solution theory) using regression parameters obtained from the pure component isotherms. The statistical thermodynamic model and the ideal adsorbed solution theory gave the best representation of the experimental data. The activity coefficients of the adsorbed phase for the binary experimental data have been calculated and the results showed no appreciable deviation of the adsorbed phase from ideality.
    URI
    http://hdl.handle.net/10454/4203
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.