Now showing items 1-20 of 1905

    • Dolomite study for in situ CO 2 capture for chemical looping reforming

      Pimenidou, Panagiota; Dupont, V. (2015)
      The non-isothermal kinetic and thermal behaviour of a naturally formed dolomite in conditions that approach in situ CO2 capture in chemical looping reforming, were investigated. The performance of this dolomite was studied at micro-scale in ‘dry’ conditions, as well as at macro-scale in ‘dry’ and ‘wet’ conditions to investigate the effects of scale (3 mg, 2.5 g), partial pressures of CO2 (<15 kPa) and steam, and deactivation upon limited cycling. The carbonation and calcination kinetics were modelled using an improved iterative Coats–Redfern method. Increasing CO2 partial pressures on the ‘dry’ macroscale exacerbated the experimental carbonation conversions in an inversely proportional trend when compared with those at micro-scale. The presence of steam had a positive effect on CO2 chemisorption. Steam had a negligible influence on the calcination activation energies. The activation energies of carbonation were increased for the experiments at the highest CO2 partial pressures under wet conditions.
    • To what extent can portable fluorescence spectroscopy be used in the real-time assessment of microbial water quality?

      Baker, A.; Cumberland, S.A.; Bradley, C.; Buckley, C.; Bridgeman, John (2015)
      The intrinsic fluorescence of aquatic organic matter emitted at 350 nm when excited at 280 nm correlates widely with water quality parameters such as biochemical oxygen demand. Hence, in sewage-impacted rivers and groundwater, it might be expected that fluorescence at these wavelengths will also correlate with the microbial water quality. In this paper we use a portable fluorimeter to assess the relationship between fluorescence intensity at this wavelength pair and Escherichia coli enumeration in contrasting river catchments of poor water quality: in KwaZulu-Natal, S. Africa and the West Midlands, UK. Across all catchments we demonstrate a log correlation (r = 0.74) between fluorescence intensity and E. coli over a seven-log range in E. coli enumerations on non-perturbed (unfiltered) samples. Within specific catchments, the relationship between fluorescence intensity and E. coli is more variable, demonstrating the importance of catchment-specific interference. Our research demonstrates the potential of using a portable fluorimeter as an initial screening tool for indicative microbial water quality, and one that is ideally suited to simple pollution scenarios such as assessing the impact of faecal contamination in river or groundwater at specific sites.
    • Positron emission particle tracking (PEPT): A novel approach to flow visualisation in lab-scale anaerobic digesters

      Sindall, R.C.; Dapelo, Davide; Leadbeater, T.; Bridgeman, John (2017)
      Positron emission particle tracking (PEPT) was used to visualise the flow patterns established by mixing in two laboratory-scale anaerobic digesters fitted with mechanical mixing or gas mixing apparatus. PEPT allows the visualisation of flow patterns within a digester without necessitating the use of a transparent synthetic sludge. In the case of the mechanically-mixed digester, the mixing characteristics of opaque sewage sludge was compared to a transparent synthetic sludge at different mixing speeds. In the gas-mixed apparatus, two synthetic sludges were compared. In all scenarios, quasi-toroidal flow paths were established. However, mixing was less successful in more viscous liquids unless mixing power was increased to compensate for the increase in viscosity. The robustness of the PEPT derived velocities was found to be significantly affected by the frequency with which the particle enters a given volume of the vessel, with the accuracy of the calculated velocity decreasing in regions with low data capture. Nevertheless, PEPT was found to offer a means of accurate validation of computational fluid dynamics models which in turn can help to optimise flow patterns for biogas production.
    • Portable LED fluorescence instrumentation for the rapid assessment of potable water quality

      Bridgeman, John; Baker, A.; Brown, D.; Boxall, J.B. (2015)
      Characterising the organic and microbial matrix of water are key issues in ensuring a safe potable water supply. Current techniques only confirm water quality retrospectively via laboratory analysis of discrete samples. Whilst such analysis is required for regulatory purposes, it would be highly beneficial to monitor water quality in-situ in real time, enabling rapid water quality assessment and facilitating proactive management of water supply systems. A novel LED-based instrument, detecting fluorescence peaks C and T (surrogates for organic and microbial matter, respectively), was constructed and performance assessed. Results from over 200 samples taken from source waters through to customer tap from three UK water companies are presented. Excellent correlation was observed between the new device and a research grade spectrophotometer (r2 = 0.98 and 0.77 for peak C and peak T respectively), demonstrating the potential of providing a low cost, portable alternative fluorimeter. The peak C/TOC correlation was very good (r 2 = 0.75) at low TOC levels found in drinking water. However, correlations between peak T and regulatory measures of microbial matter (2 day/3 day heterotrophic plate counts (HPC), E. coli, and total coliforms) were poor, due to the specific nature of these regulatory measures and the general measure of peak T. A more promising correlation was obtained between peak T and total bacteria using flow cytometry. Assessment of the fluorescence of four individual bacteria isolated from drinking water was also considered and excellent correlations found with peak T (Sphingobium sp. (r 2 = 0.83); Methylobacterium sp. (r 2 = 1.0); Rhodococcus sp. (r 2 = 0.86); Xenophilus sp. (r 2 = 0.96)). It is notable that each of the bacteria studied exhibited different levels of fluorescence as a function of their number. The scope for LED based instrumentation for insitu, real time assessment of the organic and microbial matrix of potable water is clearly demonstrated.
    • Dynamic analysis model of a class E2 converter for low power wireless charging links

      Bati, A.; Luk, P.C.K.; Aldhaher, S.; See, C.H.; Abd-Alhameed, Raed A.; Excell, P.S. (2019)
      A dynamic response analysis model of a Class E2 converter for wireless power transfer applications is presented. The converter operates at 200 kHz and consists of an induction link with its primary coil driven by a class E inverter and the secondary coil with a voltage-driven class E synchronous rectifier. A seventh-order linear time invariant state-space model is used to obtain the eigenvalues of the system for the four modes resulting from the operation of the converter switches. A participation factor for the four modes is used to find the actual operating point dominant poles for the system response. A dynamic analysis is carried out to investigate the effect of changing the separation distance between the two coils, based on converter performance and the changes required of some circuit parameters to achieve optimum efficiency and stability. The results show good performance in terms of efficiency (90–98%) and maintenance of constant output voltage with dynamic change of capacitance in the inverter. An experiment with coils of the dimension of 53 × 43 × 6 mm3 operating at a resonance frequency of 200 kHz, was created to verify the proposed mathematical model and both were found to be in excellent agreement.
    • Eight-Element Dual-Polarized MIMO Slot Antenna System for 5G Smartphone Applications

      Ojaroudi Parchin, Naser; Al-Yasir, Yasir; Ali, Ammar H.; Elfergani, Issa T.; Noras, James M.; Rodriguez, Jonathan; Abd-Alhameed, Raed A. (2019-02)
      In this paper, we propose an eight-port/four-resonator slot antenna array with a dual-polarized function for multiple-input-multiple-output (MIMO) 5G mobile terminals. The design is composed of four dual-polarized square-ring slot radiators fed by pairs of microstrip-line structures. The radiation elements are designed to operate at 3.6 GHz and are located on the corners of the smartphone PCB. The squarering slot radiators provide good dual-polarization characteristic with similar performances in terms of fundamental radiation characteristics. In order to improve the isolation and also reduce the mutual coupling characteristic between the adjunct microstrip-line feeding ports of the dual-polarized radiators, a pair of circular-ring/open-ended parasitic structures is embedded across each square-ring slot radiator. The −10-dB impedance bandwidth of each antenna-element is 3.4–3.8 GHz. However, for −6-dB impedance bandwidth, this value is 600 MHz (3.3–3.9 GHz). The proposed MIMO antenna offers good S-parameters, high-gain radiation patterns, and sufficient total efficiencies, even though it is arranged on a high-loss FR-4 dielectric. The SAR function and the radiation characteristics of the proposed design in the vicinity of user-hand/userhead are studied. A prototype of the proposed smartphone antenna is fabricated, and good measurements are provided. The antenna provides good features with a potential application for use in the 5G mobile terminals.
    • Comparison of two different indentation techniques in studying the in-situ viscoelasticity behavior of liquid crystals

      Soon, C.F.; Tee, K.S.; Youseffi, Mansour; Denyer, Morgan C.T. (2015-09)
      Liquid crystal is a new emerging biomaterial. The physical property of liquid crystal plays a role in supporting the adhesion of cells. Nano and microball indentation techniques were applied to determine the elastic modulus or viscoelasticity of the cholesteryl ester liquid crystals in the culture media. Nano-indentation results (108 ± 19.78 kPa, N = 20) agreed well with the microball indentation (110 ± 19.95 kPa, N = 60) for the liquid crystal samples incubated for 24 hours at 37o C, respectively. However, nanoindentation could not measure the modulus of the liquid crystal (LC) incubated more than 24 hours. This is due to the decreased viscosity of the liquid crystal after immersion in the cell culture media for more than 24 hours. Alternatively, microball indentation was used and the elastic modulus of the LC immersed for 48 hours was found to decrease to 55 ± 9.99 kPa (N = 60). The microball indentation indicated that the LC did not creep after 40 seconds of indentation. However, the elastic modulus of the LC was no longer measurable after 72 hours of incubation due to the lost of elasticity. Microball indentation seemed to be a reliable technique in determining the elastic moduli of the cholesteryl ester liquid crystals.
    • A novel algorithm for human fall detection using height, velocity and position of the subject from depth maps

      Nizam, Y.; Abdul Jamil, M.M.; Mohd, M.N.H.; Youseffi, Mansour; Denyer, Morgan C.T. (2018-07)
      Human fall detection systems play an important role in our daily life, because falls are the main obstacle for elderly people to live independently and it is also a major health concern due to aging population. Different approaches are used to develop human fall detection systems for elderly and people with special needs. The three basic approaches include some sort of wearable devices, ambient based devices or non-invasive vision-based devices using live cameras. Most of such systems are either based on wearable or ambient sensor which is very often rejected by users due to the high false alarm and difficulties in carrying them during their daily life activities. This paper proposes a fall detection system based on the height, velocity and position of the subject using depth information from Microsoft Kinect sensor. Classification of human fall from other activities of daily life is accomplished using height and velocity of the subject extracted from the depth information. Finally position of the subject is identified for fall confirmation. From the experimental results, the proposed system was able to achieve an average accuracy of 94.81% with sensitivity of 100% and specificity of 93.33%.
    • Enhanced dielectric properties of immiscible poly (vinylidene fluoride)/low density polyethylene blends by inducing multilayered and orientated structures

      Lin, X.; Fan, L.; Ren, D.; Jiao, Z.; Yang, W.; Coates, Philip D. (2017-04-01)
      In order to improve the frequency-dependent dielectric properties of the immiscible polymeric blends which were melt-compounded by composing poly (vinylidene fluoride) (PVDF) and low density polyethylene (LDPE), the layer multiplication and the solid phase orientation technologies were respectively adopted as two effective strategies to optimize the dispersion state and the orientation of internal microstructure, aiming at reducing physical porosity and improving the barrier performance as well as crystal phase of the polymer extrudates. Results comparison showed the dielectric properties were greatly dependent on the crystal type and the physical porosity density which were also emphasized as the interfacial effect in the previous work [ref. 29: Lin X et al, J Appl Polym Sci 2015; 132(36), 42507]. It was found that the multilayer-structure manipulation could substantially improve the dispersion state between the two immiscible components, enhance the mechanical performance and reduce the internal defects and increase the dielectric constant while keeping the dielectric loss stable. By uniaxial stretching the sample sheets at a rubber state temperature of ca. 10-20˚C below the melting point, crystal transformation was induced by increasing molecular chains orientation degree which was also contributed to the enhancement of the dielectric properties. These techniques implied the potential as a promising way for inducing functional structures of polymeric blends.
    • Comparison of biophysical properties characterized for microtissues cultured using microencapsulation and liquid crystal based 3D cell culture techniques

      Soon, C.F.; Tee, K.S.; Wong, S.C.; Nayan, N.; Sundra, S.; Ahmad, M.K.; Sefat, Farshid; Sultana, N.; Youseffi, Mansour (2018-02)
      Growing three dimensional (3D) cells is an emerging research in tissue engineering. Biophysical properties of the 3D cells regulate the cells growth, drug diffusion dynamics and gene expressions. Scaffold based or scaffoldless techniques for 3D cell cultures are rarely being compared in terms of the physical features of the microtissues produced. The biophysical properties of the microtissues cultured using scaffold based microencapsulation by flicking and scaffoldless liquid crystal (LC) based techniques were characterized. Flicking technique produced high yield and highly reproducible microtissues of keratinocyte cell lines in alginate microcapsules at approximately 350 ± 12 pieces per culture. However, microtissues grown on the LC substrates yielded at lower quantity of 58 ± 21 pieces per culture. The sizes of the microtissues produced using alginate microcapsules and LC substrates were 250 ± 25 μm and 141 ± 70 μm, respectively. In both techniques, cells remodeled into microtissues via different growth phases and showed good integrity of cells in field-emission scanning microscopy (FE-SEM). Microencapsulation packed the cells in alginate scaffolds of polysaccharides with limited spaces for motility. Whereas, LC substrates allowed the cells to migrate and self-stacking into multilayered structures as revealed by the nuclei stainings. The cells cultured using both techniques were found viable based on the live and dead cell stainings. Stained histological sections showed that both techniques produced cell models that closely replicate the intrinsic physiological conditions. Alginate microcapsulation and LC based techniques produced microtissues containing similar bio-macromolecules but they did not alter the main absorption bands of microtissues as revealed by the Fourier transform infrared spectroscopy. Cell growth, structural organization, morphology and surface structures for 3D microtissues cultured using both techniques appeared to be different and might be suitable for different applications.
    • Improved dielectric performance of polypropylene/multiwalled carbon nanotube nanocomposites by solid-phase orientation

      Lin, X.; Tian, J.-W.; Hu, P.-H.; Ambardekar, Rohan; Thompson, Glen; Dang, Z.-M.; Coates, Philip D. (2016-01-15)
      By means of die drawing technique at rubber-state, effect of the orientation of microstructure on dielectric properties of polypropylene/multi-walled carbon nanotubes nanocomposites (PP/MWCNTs) was emphasized in this work. Viscoelasticity behavior of PP/MWCNTs with MWCNTs weight loadings from 0.25 to 5 wt% and dielectric performance of the stretched PP/MWCNTs under different drawing speeds and drawing ratios were studied for seeking an insight of the influences of dispersion and orientation state of MWCNTs and matrix molecular chains. A viscosity decrease (ca. 30%) of the PP/MWCNTs-0.25wt% melt was obviously observed owing to the free volume effect. Differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) were adopted to detect the orientation structure and the variation of crystal morphology of PP/MWCNTs. Melting plateau regions, which indicated the mixed crystallization morphology for the stretched samples, were found in the DSC patterns instead of a single-peak for the unstretched samples. It was found that the uniaxial stretching process broke the conductive MWCNTs networks and consequently increased the orientation of MWCNTs as well as molecular chains along the tensile force direction, leading to an improvement of the dielectric performance.
    • Electrocardiograph (ECG) circuit design and software-based processing using LabVIEW

      Abdul Jamil, M.M.; Soon, C.F.; Achilleos, A.; Youseffi, Mansour; Javid, F. (2017)
      The efficiency and acquisition of a clean (diagnosable) ECG signal dependent upon the proper selection of electronic components and the techniques used for noise elimination. Given that the human body and the lead cables act as antennas, hence picking up noises from the surroundings, thus a major part in the design of an ECG device is to apply various techniques for noise reduction at the early stage of the transmission and processing of the signal. This paper, therefore, covers the design and development of a Single Chanel 3-Lead Electrocardiograph and a Software-based processing environment. Main design characteristics include reduction of common mode voltages, good protection for the patient, use of the ECG device for both monitoring and automatic extraction (measurements) of the ECG components by the software. The hardware consisted of a lead selection stage for the user to select the bipolar lead for recording, a pre-amplification stage for amplifying the differential potentials while rejecting common mode voltages, an electrical isolation stage from three filtering stages with different bandwidths for noise attenuation, a power line interference reduction stage and a final amplification stage. A program in LabVIEW was developed to further improve the quality of the ECG signal, extract all its features and automatically calculate the main ECG output waveforms. The program had two main sections: The filtering section for removing power line interference, wideband noises and baseline wandering, and the analysis section for automatically extracting and measuring all the features of the ECG in real time. A Front Panel Environment was, therefore, developed for the user interface. The present system produced ECG tracings without the influence of noise/artefacts and provided accurate detection and measurement of all the components of the ECG signal.
    • In vitro growth of human keratinocytes and oral cancer cells into microtissues: an aerosol-based microencapsulation technique

      Leong, W.Y.; Soon, C.F.; Wong, S.C.; Tee, K.S.; Cheong, S.C.; Gan, S.H.; Youseffi, Mansour (2017-05)
      Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.
    • A novel split-reflux policy in batch reactive distillation for the optimum synthesis of a number of methyl esters

      Aqar, D.Y.; Rahmanian, Nejat; Mujtaba, Iqbal M. (2019)
      The production of a number of methyl esters such as methyl decanoate (MeDC), methyl salicylate (MeSC), and methyl benzoate (MeBZ) by esterification reactions of several carboxylic acids such as decanoic acid (DeC), salicylic acid (ScA), and benzoic acid (BeZ) with methanol, respectively, through a reactive distillation system (batch or continuous) is cost-intensive and operationally challenging operation. It is difficult to keep the reaction species together in the reaction section due to wide boiling point differences between the reactants. Methanol (in those esterification processes) having the lowest boiling temperature in the reaction mixture can separate easily from carboxylic acid as the distillation progresses, resulting in a severe drop in the reaction conversion ratio of the acid employing batch/continuous distillation system. In order to overcome this type of challenge and to increase the overall reaction conversion, a novel split-reflux conventional batch reactive distillation configuration (sr-BRD) is proposed/studied in detail in this investigation. The optimal performance of BRD/ sr-BRD column is determined in terms of maximum achievable conversion of acids, and highest concentration of the esters produced for each chemical reaction scheme. The results for given separation tasks are compared with those obtained using conventional batch distillation (BRD) process. The optimization results clearly show that the sr-BRD process significantly improves the process efficiency, the conversion ratio of acid, and the product purity of methyl esters compared to that obtained via the BRD process.
    • Thermal prediction of convective-radiative porous fin heatsink of functionally graded material using adomian decomposition method

      Oguntala, G.A.; Sobamowo, G.; Ahmed, Y.; Abd-Alhameed, Raed A. (2019-03)
      In recent times, the subject of effective cooling have become an interesting research topic for electronic and mechanical engineers due to the increased miniaturization trend in modern electronic systems. However, fins are useful for cooling various low and high power electronic systems. For improved thermal management of electronic systems, porous fins of functionally graded materials (FGM) have been identified as a viable candidate to enhance cooling. The present study presents an analysis of a convective–radiative porous fin of FGM. For theoretical investigations, the thermal property of the functionally graded material is assumed to follow linear and power-law functions. In this study, we investigated the effects of inhomogeneity index of FGM, convective and radiative variables on the thermal performance of the porous heatsink. The results of the present study show that an increase in the inhomogeneity index of FGM, convective and radiative parameter improves fin efficiency. Moreover, the rate of heat transfer in longitudinal FGM fin increases as b increases. The temperature prediction using the Adomian decomposition method is in excellent agreement with other analytical and method.
    • Numerical study of performance of porous fin heat sink of functionally graded material for improved thermal management of consumer electronics

      Oguntala, G.A.; Sobamowo, G.; Abd-Alhameed, Raed A.; Noras, James M. (2019)
      The ever-increasing demand for high performance electronic and computer systems has unequivocally called for increased microprocessor performance. However, increasing microprocessor performance requires increasing the power and on-chip power density of the microprocessor, both of which are associated with increased heat dissipation. In recent times, thermal management of electronic systems has gained intense research attention due to increased miniaturization trend in the electronics industry. In the paper, we present a numerical study on the performance of a convective-radiative porous heat sink with functionally graded material for improved cooling of various consumer electronics. For the theoretical investigation, the thermal property of the functionally graded material is assumed as a linear and power-law function. We solved the developed thermal models using the Chebyshev spectral collocation method. The effects of inhomogeneity index of FGM, convective and radiative parameters on the thermal behaviour of the porous heat sink are investigated. The present study shows that increase in the inhomogeneity index of FGM, convective and radiative parameter improves the thermal efficiency of the porous fin heat sink. Moreover, for all values of Nc and Rd, the temperature gradient along the fin of FGM is negligible compared to HM fin in both linear and power-law functions. For comparison, the thermal predictions made in the present study using Chebyshev spectral collocation method agrees excellently with the established results of Runge-Kutta with shooting and homotopy analytical method.
    • Study of industrial naphtha catalytic reforming reactions via modelling and simulation

      Zakari, A.Y.; Aderemi, B.O.; Patel, Rajnikant; Mujtaba, Iqbal M. (2019)
      Steady state and dynamic modelling and simulation of catalytic reforming unit of Kaduna Refining & Petrochemical Company, NNPC (Nigeria) was carried to find out the behaviour of the reactions under both steady and unsteady state conditions. The basic model together with kinetic and thermodynamic parameters and properties were taken from the literature but is developed in gPROMS (an equation oriented modelling software) model building platform for the first time rather than in MATLAB or other modelling platform used by other researchers in the past. The simulation was performed using gPROMS and the predictions were validated against those available in the literature. The validated model was then used to monitor the behaviour of the temperature, concentrations of parafins, naphthenes and aromatics with respect to both time and height of the reactor of the industrial refinery of Nigeria. Hydrogen yield, Research octane number (RON) and temperature profiles are also reported. The components behave similarly in terms of reactions in the reactors but the time to attain quasi-steady state is different. The results are in good agreement with the industrial plant data.
    • Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars

      Ge, W-J.; Ashour, Ashraf F.; Cao, D-F.; Lu, W.; Gao, P.; Yu, J.; Ji, X.; Cai, C. (2019-01-15)
      This paper presents test results of fifteen reinforced engineered cementitious composite (ECC)-concrete beams. The main parameters investigated were the amount and type of reinforcement, and ECC thickness. All reinforced ECC-concrete composite beams tested were classified into four groups according to the amount and type of main longitudinal reinforcement used; three groups were reinforced with FRP, steel and hybrid FRP/steel bars, respectively, having similar tensile capacity, whereas the fourth group had a larger amount of only FRP reinforcement. In each group, four height replacement ratios of ECC to concrete were studied. The test results showed that the moment capacity and stiffness of concrete beams are improved and the crack width can be well controlled when a concrete layer in the tension zone is replaced with an ECC layer of the same thickness. However, the improvement level of ECC-concrete composite beams was controlled by the type and amount of reinforcement used. Based on the simplified constitutive relationships of materials and plane section assumption, three failure modes and their discriminate formulas are developed. Furthermore, simplified formulas for moment capacity calculations are proposed, predicting good agreement with experimental results.
    • Flexural behavior of ECC-concrete composite beams reinforced with steel bars

      Ge, W-J.; Ashour, Ashraf F.; Ji, X.; Cai, C.; Cao, D-F. (2018-01-20)
      This paper presents analytical technique and simplified formulas for the calculations of cracking, yield and ultimate moments of different cases as well as deflections of ECC-concrete composite beams reinforced with steel bars. The technique is based on the simplified constitutive models of materials, strain compatibility, perforce bond of materials and equilibrium of internal forces and moment. Experimental testing of eleven ECC-concrete composite beams reinforced with steel bars is also presented. All beams tested had the same geometrical dimensions but different steel reinforcement strength and ECC thickness. The proposed formulas showed good agreement with the experimental results of various moment values and deflections. A parametric analysis shows that yield and ultimate moments increase with the increase of concrete strength in case of compression failure but, essentially, remain unchanged in case of tensile failure. With increasing the tensile resistance, for example by increasing ECC height replacement ratio, reinforcement ratio, strength of steel reinforcement and ECC, ultimate curvature and energy dissipation increase in case of tensile failure and decrease in case of compressive failure. On the other hand, ductility and energy dissipation ratio decrease with the increase of reinforcement ratio and strength, but, essentially, remain unchanged with increasing the height replacement ratio and strength of ECC.
    • Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimeter-wave applications

      Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; Shukla, P.; See, C.H.; Abd-Alhameed, Raed A.; Falcone, F.; Limiti, E. (2019)
      This paper presents empirical results of an innovative beam scanning leaky-wave antenna (LWA) which enables scanning over a wide angle from -35o to +34.5o between 57 GHz and 62 GHz, with broadside radiation centered at 60 GHz. The proposed LWA design is based on composite right/left-handed transmission-line (CRLH-TL) concept. The single layer antenna structure includes a matrix of 3×9 square slots that is printed on top of the dielectric substrate; and printed on the bottom ground-plane are Π and Tshaped slots that enhance the impedance bandwidth and radiation properties of the antenna. The proposed antenna structure exhibits metamaterial property. The slot matrix provides beam scanning as a function of frequency. Physical and electrical size of the antenna is 18.7×6×1.6 mm3 and 3.43􀣅􀫙×1.1􀣅􀫙×0.29􀣅􀫙, respectively; where 􀣅􀫙 is free space wavelength at 55 GHz. The antenna has a measured impedance bandwidth of 10 GHz (55 GHz to 65 GHz) or fractional bandwidth of 16.7%. Its optimum gain and efficiency are 7.8 dBi and 84.2% at 62 GHz.