• Investigation of the Applicability of an E-Portfolio Tool to Support Final Year Engineering Projects. [Poster presentation].

      Sheriff, Ray E.; Ong, Felicia Li Chin (15/09/2011)
      The Royal Academy of Engineering, together with the Higher Education Academy Engineering Subject Centre, organised one of the two Dissemination Seminars at University of Bradford. This event was for the project leaders of funded engineering projects under their three calls, opened between March 2010 and March 2011.
    • Investigation of the Growth of Particles Produced in a Laval Nozzle

      Zhalehrajabi, E.; Rahmanian, Nejat; Zarrinpashne, S.; Balasubramanian, P. (2014)
      This study focuses on numerical modeling of condensation of water vapor in a Laval nozzle, using the liquid drop nucleation theory. Influence of nozzle geometry, pressure, and temperature on the average drop size is reported. A computer program written in MATLAB was used used to calculate the nucleation and condensation of water vapor in the nozzle. The simulation results are validated with the available experimental data in the literature for steam condensation. The model reveals that the average drop size is reduced by increasing the divergent angle of the nozzle. The results also confirm that increasing the inlet pressure has a direct effect on the average drop size while temperature rise has an inverse effect on the drop size.
    • Investigation of the influence of vacuum venting on mould surface temperature in micro injection moulding

      Sorgato, M.; Babenko, Maksims; Lucchetta, G.; Whiteside, Benjamin R. (2016)
      The application of vacuum venting for the removal of air from mould cavity has been introduced in injection moulding with the intent to enhance micro/nano features replication and definition. The technique is adopted to remove air pockets trapped in the micro-features, which are out of reach for conventional venting technologies and can create considerable resistance to the melt filling flow. Nonetheless, several studies have revealed a negative effect on replication that could possibly arise from the application of vacuum venting. Although the incomplete filling of micro-scale features has often been attributed to poor venting, the limited research examining the application of vacuum venting has produced mixed results. In this work, the effect of air evacuation was experimentally investigated, monitoring mould and polymer temperature evolution during the micro injection moulding process by means of a high speed infrared camera and a sapphire window, which forms part of the mould wall. The results show that air evacuation removes a mould surface heating effect caused by rapid compression of the air ahead of the flow front and subsequent conduction of that heat into the mould surface. Hence, with the increase of the surface-to-volume ratio in micro-cavities, air evacuation has a detrimental effect on the cavity filling with polymers that are sensitive to changes of the mould temperature.
    • Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study

      Abeykoon, Chamil; Kelly, Adrian L.; Brown, Elaine C.; Vera-Sorroche, Javier; Coates, Philip D.; Harkin-Jones, E.; Howell, Ken B.; Deng, J.; Li, K.; Price, M. (2014-12-31)
      Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the experimental measurements. Empirical models are in good agreement with the experimental measurements and hence these can be used in studying process energy behaviour in detail and to identify ways to optimise the process energy efficiency.
    • Investigation of the structural and mechanical properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma sintering

      Irshad, H.M.; Ahmed, B.A.; Ehsan, M.A.; Khan, Tahir I.; Laoui, T.; Yousaf, M.R.; Ibrahim, A.; Hakeem, A.S. (2017-10)
      Alumina-cubic boron nitride (cBN) composites were prepared using the spark plasma sintering (SPS) technique. Alpha-alumina powders with particle sizes of ∼15 µm and ∼150 nm were used as the matrix while cBN particles with and without nickel coating were used as reinforcement agents. The amount of both coated and uncoated cBN reinforcements for each type of matrix was varied between 10 to 30 wt%. The powder materials were sintered at a temperature of 1400 °C under a constant uniaxial pressure of 50 MPa. We studied the effect of the size of the starting alumina powder particles, as well as the effect of the nickel coating, on the phase transformation from cBN to hBN (hexagonal boron nitride) and on the thermo-mechanical properties of the composites. In contrast to micro-sized alumina, utilization of nano-sized alumina as the starting powder was observed to have played a pivotal role in preventing the cBN-to-hBN transformation. The composites prepared using nano-sized alumina reinforced with nickel-coated 30 wt% cBN showed the highest relative density of 99% along with the highest Vickers hardness (Hv2) value of 29 GPa. Because the compositions made with micro-sized alumina underwent the phase transformation from cBN to hBN, their relative densification as well as hardness values were relatively low (20.9–22.8 GPa). However, the nickel coating on the cBN reinforcement particles hindered the cBN-to-hBN transformation in the micro-sized alumina matrix, resulting in improved hardness values of up to 24.64 GPa.
    • Investigation of the Temperature Homogeneity of Die Melt Flows in Polymer Extrusion

      Abeykoon, Chamil; Martin, P.J.; Kelly, Adrian L.; Li, K.; Brown, Elaine C.; Coates, Philip D. (2014)
      Polymer extrusion is fundamental to the processing of polymeric materials and melt flow temperature homogeneity is a major factor which influences product quality. Undesirable thermal conditions can cause problems such as melt degradation, dimensional instability, weaknesses in mechanical/optical/geometrical properties, and so forth. It has been revealed that melt temperature varies with time and with radial position across the die. However, the majority of polymer processes use only single-point techniques whose thermal measurements are limited to the single point at which they are fixed. Therefore, it is impossible for such techniques to determine thermal homogeneity across the melt flow. In this work, an extensive investigation was carried out into melt flow thermal behavior of the output of a single extruder with different polymers and screw geometries over a wide range of processing conditions. Melt temperature profiles of the process output were observed using a thermocouple mesh placed in the flow and results confirmed that the melt flow thermal behavior is different at different radial positions. The uniformity of temperature across the melt flow deteriorated considerably with increase in screw rotational speed while it was also shown to be dependent on process settings, screw geometry, and material properties. Moreover, it appears that the effects of the material, machine, and process settings on the quantity and quality of the process output are heavily coupled with each other and this may cause the process to be difficult to predict and variable in nature. (C) 2013 Society of Plastics Engineers
    • Investigation of using photovoltaic system at local residential community level

      Ihbal, Abdel-Baset M.I.; Abd-Alhameed, Raed A.; Elgadal, M.A.; Gavasa, H.M.; Ehbal, M.M. (2014)
      The non-renewable fossil fuels are the foremost resources used to generate electricity and heat energy worldwide. The need to move towards Sustainable Community Renewable Energy solutions is highlighted by the increasing greenhouse gas emissions resulting from the use of fossil fuels. Local peoples could be involved in renewable projects to ensure a local community experiences benefits within relatively short time periods and could eventually contribute a significant amount of electricity into the energy market. In the UK, renewable energy generated on a local community rather than national can be considered as one of the key Solution of the global energy challenges and to establish a secure energy supply system. This paper aims to investigate the possibility of using renewable energy (RE) at community level. The evaluation of the cost-effectiveness of the building integrated photovoltaic roofing system when connected to the utility grid has been taken as an example. Using the current utility rates and the energy consumption data, the payback period of the system is evaluated.
    • Investigation of Voltage Stability Indices to Identify Weakest Bus (TBC).

      Jalboub, Mohamed K.; Rajamani, Haile S.; Liang, D.T.W.; Abd-Alhameed, Raed A.; Ihbal, Abdel-Baset M.I. (2010)
      This paper proposes a new index to determine the static voltage stability of the load buses in a power network for certain operating conditions and hence identifies load buses which are close to voltage collapse. The proposed index is formulated from the quadratic equation derived from a two-bus network and is computed using the apparent power and the line impedance. The proposed index shows how far the load buses from their voltage stability limit and hence the most sensitive bus can be identified according to maximum loadability. 14 bus IEEE reliability test system is used to study the performance of the proposed index for its validity. A comparison is also made between proposed index and some other indices found in the literature. The results are discussed and key conclusion drawn.
    • An investigation on process of seeded granulation in a continuous drum granulator using DEM

      Behjani, M.A.; Rahmanian, Nejat; Ghani N.F.b.A.; Hassanpour, A. (2017)
      Numerical simulation of wet granulation in a continuous granulator is carried out using Discrete Element Method (DEM) to discover the possibility of formation of seeded granules in a continuous process with the aim of reducing number of experimental trials and means of process control. Simple and scooped drum granulators are utilized to attain homogenous seeded granules in which the effects of drum rotational speed, particles surface energy, and particles size ratio are investigated. To reduce the simulation time a scale-up scheme is designed in which a dimensionless number (Cohesion number) is defined based on the work of cohesion and gravitational potential energy of the particles. Also a mathematical/numerical method along with a MATLAB code is developed by which the percentage of surface coverage of each granule is predicted precisely. The results show that use of continuous granulator is promising provided that a high level of shear is considered in the granulator design, e.g. it is observed that using baffles inside the drum granulators is essential for producing seeded granules. It is observed, moreover, that the optimum surface energy for scooped granulator with rotational speed of 50 rpm is 3 J/m2 which is close to the number predicted by Cohesion number. It is also shown that increasing the seed/fine size ratio enhances the seeded granulation both quantitatively (60% increase in seeds surface coverage) and qualitatively (more homogeneous granules).
    • Investigation on scour protection of submarine piggyback pipeline

      Yang, S.; Shi, B.; Guo, Yakun; Yang, L. (2019-06-15)
      This paper presents the results of laboratory experiments and numerical simulations to investigate the effect of different piggyback pipeline configuration on the morphology of local seabed scour subject to steady currents. Piggyback pipeline configuration investigated includes the commonly used piggyback pipeline, namely a small pipe attached on the top of large pipe and new form of piggyback pipeline proposed in this study in which a small pipe is attached to the large pipe on the upstream and downstream side, respectively. Pressure gradient, drag coefficient, lift coefficient and scour extent around pipelines are measured and analyzed for a range of pipelines and current conditions. Results show that the vortex strength downstream of the commonly used piggyback pipeline is larger than that for a single as well as the new piggyback pipeline under the same condition. This new type piggyback pipeline can effectively reduce the depth and width of the scour hole. In particular, when the ratio of the small pipe diameter over the large pipe diameter is greater than 0.3, little scour under this new type piggyback pipeline occurs for the test conditions. The bed topography downstream of the pipe has also been altered to favor the backfill.
    • Investigation on scour scale of piggyback pipeline under wave conditions

      Yang, S.; Shi, B.; Guo, Yakun (2019-06-15)
      Laboratory experiments are presented to investigate the effect of different piggyback pipeline configurations on the morphology of local scour under wave conditions. Scour depth and width around the pipelines under regular and irregular waves are measured and analyzed for a range of pipeline and wave conditions; such as the spacing between two pipes (G), gap between the main pipe and seabed (e), pipe diameter (D), wave height (H) and period (T). Experimental results reveal that both the scour depth and width around piggyback pipeline is much larger than those around single pipe under the same wave conditions. Scour depth increases with the increase of the Keulegan-Carpenter (KC) number and decreases with increase of G and e. When e exceeds 0.5D, scour depth tends to approach 0.When spacing G is greater than 0.4D, the destabilization from small pipe to large one is greatly reduced, resulting in scour depth around piggyback pipeline being close to that around single pipe. Similar to scour depth, scour width broadens with the increase of KC number increasing and decreases with the increase of G. Experiments also show that the effect of e on scour depth is greater than that of G under the same test conditions, while their impact on scour width is opposite. Furthermore, scour width under irregular waves is extended slightly compared with regular wave for otherwise the identical conditions.
    • Investigations of polarisation purity and SAR for personal satellite communications antennas using a hybrid computational method

      Mangoud, Mohab A.; Abd-Alhameed, Raed A.; Excell, Peter S. (2001)
      The use of the hybrid method of moments/finite difference time domain technique can be effective for solution of electromagnetic problems which are intractable for a single numerical method. Using this method, a study of the effects of human proximity on the polarisation purity of different types of circularly-polarised handset antennas for personal satellite communications was undertaken. Associated with this, assessments of the specific absorption rate in the head were made. The method gave stable results, in accordance with physical expectations; good agreement with the pure method of moments was shown in simplified cases omitting the head
    • An IoT-enabled Decision Support System for Circular Economy Business Model

      Mboli, Julius S.; Thakker, Dhaval; Mishra, J. (Wiley, 2021)
      The traditional linear economy using a take‐make‐dispose model is resource intensive and has adverse environmental impacts. Circular economy (CE) which is regenerative and restorative by design is recommended as the business model for resource efficiency. While there is a need for businesses and organisations to switch from linear to CE, there are several challenges that needs addressing such as business models and the criticism of CE projects often being small scale. Technology can be an enabler toward scaling up CE; however, the prime challenge is to identify technologies that can allow predicting, tracking and proactively monitoring product's residual value to motivate businesses to pursue circularity decisions. In this paper, we propose an IoT‐enabled decision support system (DSS) for CE business model that effectively allows tracking, monitoring, and analysing products in real time with the focus on residual value. The business model is implemented using an ontological model. This model is complemented by a semantic decision support system. The semantic ontological model, first of its kind, is evaluated for technical compliance. We applied DSS and the ontological model in a real‐world use case and demonstrate viability and applicability of our approach.
    • IP multicast receiver mobility support using PMIPv6 in a global satellite network

      Jaff, Esua K.; Pillai, Prashant; Hu, Yim Fun (2015-03-18)
      A new generation of satellite systems that support regenerative on-board processors (OBPs) and multiple spot beam technology have opened new and efficient possibilities of implementing IP multicast communication over satellites. These new features have widened the scope of satellite-based applications and also enable satellite operators to efficiently utilize their allocated bandwidth resources. This makes it possible to provide cost effective satellite network services. IP multicast is a network layer protocol designed for group communication to save bandwidth resources and reduce processing overhead on the source side. The inherent broadcast nature of satellites, their global coverage (air, land, and sea), and direct access to a large number of subscribers imply satellites have unrivalled advantages in supporting IP multicast applications. IP mobility support in general and IP mobile multicast support in particular on mobile satellite terminals like the ones mounted on long haul flights, maritime vessels, continental trains, etc., still remain big challenges that have received very little attention from the research community. This paper proposes how Proxy Mobile IPv6 (PMIPv6)-based IP multicast mobility support defined for terrestrial networks can be adopted and used to support IP mobile multicast in future satellite networks, taking cognizance of the trend in the evolution of satellite communications.
    • IP multicast receiver mobility using multi-homing in a multi-beam satellite network

      Jaff, Esua K.; Pillai, Prashant; Hu, Yim Fun (2013)
      There are several merits of mobile communication devices having multiple network interfaces as compared to traditional devices with just one interface. Smart phones these days are a true example of a mobile multi-homed communication device with heterogeneous network interfaces. Several solutions are available for unicast applications to provide seamless handover using the multiple interfaces of a multi-homed device in terrestrial networks. However, very little has been done on similar support for IP multicast mobility support for mobile satellite terminals in a ubiquitous multi-beam satellite network. Most of the schemes proposed for handovers in multi-homed devices place a lot of emphasis on maintaining the multi-homed device identity especially when the second interface joins the communication session. This increases complexity in the whole system. The issue of maintaining the multi-homed device identity plus the additional signalling messages involve are neither necessary nor desired in an IP multicast communication handover in a multi-beam satellite scenario. This paper seeks to exploit the group communication features of IP multicast (i.e., the fact that anyone can join or leave a multicast group at any time and from any location) and the multiple interfaces of a mobile Return Channel Satellite Terminal (RCST) to support IP multicast communication during handover when a mobile multi-homed RCST changes its point of attachment to the network from one satellite gateway to another.
    • Is gender encoded in the smile? A computational framework for the analysis of the smile driven dynamic face for gender recognition

      Ugail, Hassan; Al-Dahoud, A. (2018-09)
      Automatic gender classification has become a topic of great interest to the visual computing research community in recent times. This is due to the fact that computer-based automatic gender recognition has multiple applications including, but not limited to, face perception, age, ethnicity, identity analysis, video surveillance and smart human computer interaction. In this paper, we discuss a machine learning approach for efficient identification of gender purely from the dynamics of a person’s smile. Thus, we show that the complex dynamics of a smile on someone’s face bear much relation to the person’s gender. To do this, we first formulate a computational framework that captures the dynamic characteristics of a smile. Our dynamic framework measures changes in the face during a smile using a set of spatial features on the overall face, the area of the mouth, the geometric flow around prominent parts of the face and a set of intrinsic features based on the dynamic geometry of the face. This enables us to extract 210 distinct dynamic smile parameters which form as the contributing features for machine learning. For machine classification, we have utilised both the Support Vector Machine and the k-Nearest Neighbour algorithms. To verify the accuracy of our approach, we have tested our algorithms on two databases, namely the CK+ and the MUG, consisting of a total of 109 subjects. As a result, using the k-NN algorithm, along with tenfold cross validation, for example, we achieve an accurate gender classification rate of over 85%. Hence, through the methodology we present here, we establish proof of the existence of strong indicators of gender dimorphism, purely in the dynamics of a person’s smile.
    • Is stair descent in the elderly associated with periods of high centre of mass downward accelerations?

      Buckley, John G.; Cooper, G.; Maganaris, C.N.; Reeves, N.D. (2013-02)
      When descending stairs bodyweight becomes supported on a single limb while the forwards-reaching contralateral limb is lowered in order to make contact with the step below. This is associated with lowering of the centre of mass (CoM), which in order to occur in a controlled manner, requires increased ankle and knee joint torque production relative to that in overground walking. We have previously shown that when descending steps or stairs older people operate at a higher proportion of their maximum eccentric capacity and at, or in excess of the maximum passive reference joint range of motion. This suggests they have reduced and/or altered control over their CoM and we hypothesised that this would be associated with alterations in muscle activity patterns and in the CoM vertical acceleration and velocity profiles during both the lowering and landing phases of stair descent. 15 older (mean age 75 years) and 17 young (mean age 25 years) healthy adults descended a 4-step staircase, leading with the right limb on each stair, during which CoM dynamics and electromyographic activity patterns for key lower-limb muscles were assessed. Maximum voluntary eccentric torque generation ability at the knee and ankle was also assessed. Older participants compared to young participants increased muscle co-contraction relative duration at the knee and ankle of the trailing limb so that the limb was stiffened for longer during descent. As a result older participants contacted the step below with a reduced downwards CoM velocity when compared to young participants. Peak downwards and peak upwards CoM acceleration during the descent and landing phases respectively, were also reduced in older adults compared to those in young participants. In contrast, young participants descended quickly onto the step below but arrested their downward CoM velocity sooner following landing; a strategy that was associated with longer relative duration lead-limb plantar flexor activity, increased peak upwards CoM acceleration, and a reduced landing duration. These results suggest that a reduced ability to generate high eccentric torque at the ankle in the forward reaching limb is a major factor for older participants adopting a cautious movement control strategy when descending stairs. The implications of this CoM control strategy on the incidences of falling on stairs are discussed.
    • The isolation and characterisation of antiplatelet antibodies.

      Lindsey, Nigel J.; Behrendt, M.; Hamidpour, M.; Partridge, L.J.; Griffiths, B (2006)
      The isolation and characterisation of antiplatelet antibodies in autoimmune thrombocytopenia purpura patients (ITP) is described. Autoimmune thrombocytopenia purpura is an autoimmune disease, clinically defined by low platelet counts, normal or increased megakaryocytopoiesis and antiplatelet antibodies in serum. This study used phage display to isolate Fab antiplatelet antibodies to study the structure-function relationships of pathogenic antibodies in ITP. Out of six randomly selected colonies, four colonies reacted strongly with whole platelets in enzyme-linked immunosorbent assay (ELISA). Sequence analysis showed that all four colonies had the same DNA sequence and were the same antibody. Results of Western blotting against non-reduced human platelet lysate showed that the Fab reacted with platelet proteins with apparent molecular weights of 116, 92 and 39 kD. Furthermore, Western blotting assay against purified membrane glycoprotein IIIa demonstrated reactivity against a band with a molecular weight of 92 kD. Results from Western blotting against platelet lysate and pure platelet glycoprotein confirmed the Fab fragment recognised the platelet glycoprotein IIIa. Three out of the four phage colonies produced soluble Fab, which demonstrated reactivity against platelet autoantigens in ELISA. Further sequence analysis showed that the Fab was somatically mutated suggesting antigen drive and therefore T-cell assistance was important in the development of this antibody. One of the somatic mutations introduced an RSD amino acid sequence in the complementary determining region 1(CDR1) of the light chain, which may mimic the RGD motif of fibrinogen which binds integrin GPIIb/IIIa. This raises the possibility that somatic mutation and antigen drive have produced a pathogenic autoantibody.
    • Iterative learning control for manipulator trajectory tracking without any control singularity

      Jiang, Ping; Woo, P.; Unbehauen, R. (2002)
      In this paper, we investigate trajectory tracking in a multi-input nonlinear system, where there is little knowledge of the system parameters and the form of the nonlinear function. An identification-based iterative learning control (ILC) scheme to repetitively estimate the linearity in a neighborhood of a desired trajectory is presented. Based on this estimation, the original nonlinear system can track the desired trajectory perfectly by the aid of a regional training scheme. Just like in adaptive control, a singularity exists in ILC when the input coupling matrix is estimated. Singularity avoidance is discussed. A new parameter modification procedure for ILC is presented such that the determinant of the estimate of the input coupling matrix is uniformly bounded from below. Compared with the scheme used for adaptive control of a MIMO system, the proposed scheme reduces the computation load greatly. It is used in a robotic visual system for manipulator trajectory tracking without any information about the camera-robot relationship. The estimated image Jacobian is updated repetitively and then its inverse is used to calculate the manipulator velocity without any singularity.
    • iTREE: Intelligent Traffic and Resource Elastic Energy scheme for Cloud-RAN

      Sigwele, Tshiamo; Pillai, Prashant; Hu, Yim Fun (2015-10-26)
      By 2020, next generation (5G) cellular networks are expected to support a 1000 fold traffic increase. To meet such traffic demands, Base Station (BS) densification through small cells are deployed. However, BSs are costly and consume over half of the cellular network energy. Meanwhile, Cloud Radio Access Networks (C-RAN) has been proposed as an energy efficient architecture that leverage cloud computing technology where baseband processing is performed in the cloud. With such an arrangement, more energy gains can be acquired through statistical multiplexing by reducing the number of BBUs used. This paper proposes a green Intelligent Traffic and Resource Elastic Energy (iTREE) scheme for C-RAN. In iTREE, BBUs are reduced by matching the right amount of baseband processing with traffic load. This is a bin packing problem where items (BS aggregate traffic) are to be packed into bins (BBUs) such that the number of bins used are minimized. Idle BBUs can then be switched off to save energy. Simulation results show that iTREE can reduce BBUs by up to 97% during off peak and 66% at peak times with RAN power reductions of up to 27% and 18% respectively compared with conventional deployments.