• Understanding matrix-assisted continuous co-crystallization using a data mining approach in Quality by Design (QbD)

      Chabalenge, Billy; Korde, Sachin A.; Kelly, Adrian L.; Neagu, Daniel; Paradkar, Anant R. (2020-07)
      The present study demonstrates the application of decision tree algorithms to the co-crystallization process. Fifty four (54) batches of carbamazepine-salicylic acid co-crystals embedded in poly(ethylene oxide) were manufactured via hot melt extrusion and characterized by powder X-ray diffraction, differnetial scanning calorimetry, and near-infrared spectroscopy. This dataset was then applied in WEKA, which is an open-sourced machine learning software to study the effect of processing temperature, screw speed, screw configuration, and poly(ethylene oxide) concentration on the percentage of co-crystal conversion. The decision trees obtained provided statistically meaningful and easy-to-interpret rules, demonstrating the potential to use the method to make rational decisions during the development of co-crystallization processes.