• A comparison of flare forecasting methods. II. Benchmarks, metrics and performance results for operational solar flare forecasting systems

      Leka, K.D.; Park, S-H.; Kusano, K.; Andries, J.; Barnes, G.; Bingham, S.; Bloomfield, D.S.; McCloskey, A.E.; Delouille, V.; Falconer, D.; et al. (2019-08)
      Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand solar flares to the point of being able to forecast them. As data and algorithms improve dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed methodology (Barnes et al. 2016, Paper I), international representatives of regional warning centers and research facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to – for the first time – directly compare the performance of operational solar flare forecasting methods. Multiple quantitative evaluation metrics are employed, with focus and discussion on evaluation methodologies given the restrictions of operational forecasting. Numerous methods performed consistently above the “no skill” level, although which method scored top marks is decisively a function of flare event definition and the metric used; there was no single winner. Following in this paper series we ask why the performances differ by examining implementation details (Leka et al. 2019, Paper III), and then we present a novel analysis method to evaluate temporal patterns of forecasting errors in (Park et al. 2019, Paper IV). With these works, this team presents a well-defined and robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks, and today’s performance benchmarks against which improvements and new methods may be compared.
    • A comparison of flare forecasting methods. III. Systematic behaviors of operational solar flare forecasting systems

      Leka, K.D.; Park, S-H.; Kusano, K.; Andries, J.; Barnes, G.; Bingham, S.; Bloomfield, D.S.; McCloskey, A.E.; Delouille, V.; Falcomer, D.; et al. (2019-08)
      A workshop was recently held at Nagoya University (31 October – 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of today’s operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human “forecaster in the loop”; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.