• 3D face recognition based on machine learning

      Qatawneh, S.; Ipson, Stanley S.; Qahwaji, Rami S.R.; Ugail, Hassan; 34000 (2008)
      3D facial data has a great potential for overcoming the problems of illumination and pose variation in face recognition. In this paper, we present a 3D facial system based on the machine learning. We used landmarks for feature extraction and Cascade Correlation neural network to make the final decision. Experiments are presented using 3D face images from the Face Recognition Grand Challenge database version 2.0. For CCNN using Jack-knife evaluation, an accuracy of 100% has been achieved for 7 faces with different expression, with 100% for both of specificity and sensitivity.
    • Assessment of Cubic Equations of State: Machine Learning for Rich Carbon-Dioxide Systems

      Truc, George; Rahmanian, Nejat; Pishnamazi, M. (2021-02-26)
      Carbon capture and storage (CCS) has attracted renewed interest in the re-evaluation of the equations of state (EoS) for the prediction of thermodynamic properties. This study also evaluates EoS for Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) and their capability to predict the thermodynamic properties of CO2-rich mixtures. The investigation was carried out using machine learning such as an artificial neural network (ANN) and a classified learner. A lower average absolute relative deviation (AARD) of 7.46% was obtained for the PR in comparison with SRK (AARD = 15.0%) for three components system of CO2 with N2 and CH4. Moreover, it was found to be 13.5% for PR and 19.50% for SRK in the five components’ (CO2 with N2, CH4, Ar, and O2) case. In addition, applying machine learning provided promise and valuable insight to deal with engineering problems. The implementation of machine learning in conjunction with EoS led to getting lower predictive AARD in contrast to EoS. An of AARD 2.81% was achieved for the three components and 12.2% for the respective five components mixture.
    • Automatic Selection of Verification Tools for Efficient Analysis of Biochemical Models

      Bakir, M.E.; Konur, Savas; Gheorghe, Marian; Krasnogor, N.; Stannett, M. (2018)
      Motivation: Formal verification is a computational approach that checks system correctness (in relation to a desired functionality). It has been widely used in engineering applications to verify that systems work correctly. Model checking, an algorithmic approach to verification, looks at whether a system model satisfies its requirements specification. This approach has been applied to a large number of models in systems and synthetic biology as well as in systems medicine. Model checking is, however, computationally very expensive, and is not scalable to large models and systems. Consequently, statistical model checking (SMC), which relaxes some of the constraints of model checking, has been introduced to address this drawback. Several SMC tools have been developed; however, the performance of each tool significantly varies according to the system model in question and the type of requirements being verified. This makes it hard to know, a priori, which one to use for a given model and requirement, as choosing the most efficient tool for any biological application requires a significant degree of computational expertise, not usually available in biology labs. The objective of this paper is to introduce a method and provide a tool leading to the automatic selection of the most appropriate model checker for the system of interest. Results: We provide a system that can automatically predict the fastest model checking tool for a given biological model. Our results show that one can make predictions of high confidence, with over 90% accuracy. This implies significant performance gain in verification time and substantially reduces the “usability barrier” enabling biologists to have access to this powerful computational technology.
    • Computational Techniques for Human Smile Analysis

      Ugail, Hassan; Aldahoud, Ahmad A.A. (Springer, 2019-06)
      Explains how to implement computational techniques for human smile analysis Shares insights into the human personality traits hidden in a smile Enriches the understanding of human emotions through examples of face analysis Includes key examples of the practical use of computer based smile analysis.
    • Computational Techniques for Human Smile Analysis

      Ugail, Hassan; Al-dahoud, Ahmad (2019-04-17)
      How many times have you smiled today? How many times have you frowned today? Ever thought of being in a state of self-consciousness to be able to relate your own mood with your facial emotional expressions? Perhaps with our present-day busy lives, we may not consider these as crucial questions. However, as researchers uncover more and more about the human emotional landscape they are learning the importance of understanding our emotions.
    • De-smokeGCN: Generative Cooperative Networks for joint surgical smoke detection and removal

      Chen, L.; Tang, W.; John, N.W.; Wan, Tao Ruan; Zhang, J.J. (IEEE, 2020-05)
      Surgical smoke removal algorithms can improve the quality of intra-operative imaging and reduce hazards in image-guided surgery, a highly desirable post-process for many clinical applications. These algorithms also enable effective computer vision tasks for future robotic surgery. In this paper, we present a new unsupervised learning framework for high-quality pixel-wise smoke detection and removal. One of the well recognized grand challenges in using convolutional neural networks (CNNs) for medical image processing is to obtain intra-operative medical imaging datasets for network training and validation, but availability and quality of these datasets are scarce. Our novel training framework does not require ground-truth image pairs. Instead, it learns purely from computer-generated simulation images. This approach opens up new avenues and bridges a substantial gap between conventional non-learning based methods and which requiring prior knowledge gained from extensive training datasets. Inspired by the Generative Adversarial Network (GAN), we have developed a novel generative-collaborative learning scheme that decomposes the de-smoke process into two separate tasks: smoke detection and smoke removal. The detection network is used as prior knowledge, and also as a loss function to maximize its support for training of the smoke removal network. Quantitative and qualitative studies show that the proposed training framework outperforms the state-of-the-art de-smoking approaches including the latest GAN framework (such as PIX2PIX). Although trained on synthetic images, experimental results on clinical images have proved the effectiveness of the proposed network for detecting and removing surgical smoke on both simulated and real-world laparoscopic images.
    • Detection of advanced persistent threat using machine-learning correlation analysis

      Ghafir, Ibrahim; Hammoudeh, M.; Prenosil, V.; Han, L.; Hegarty, R.; Rabie, K.; Aparicio-Navarro, F.J. (2018-12)
      As one of the most serious types of cyber attack, Advanced Persistent Threats (APT) have caused major concerns on a global scale. APT refers to a persistent, multi-stage attack with the intention to compromise the system and gain information from the targeted system, which has the potential to cause significant damage and substantial financial loss. The accurate detection and prediction of APT is an ongoing challenge. This work proposes a novel machine learning-based system entitled MLAPT, which can accurately and rapidly detect and predict APT attacks in a systematic way. The MLAPT runs through three main phases: (1) Threat detection, in which eight methods have been developed to detect different techniques used during the various APT steps. The implementation and validation of these methods with real traffic is a significant contribution to the current body of research; (2) Alert correlation, in which a correlation framework is designed to link the outputs of the detection methods, aims to identify alerts that could be related and belong to a single APT scenario; and (3) Attack prediction, in which a machine learning-based prediction module is proposed based on the correlation framework output, to be used by the network security team to determine the probability of the early alerts to develop a complete APT attack. MLAPT is experimentally evaluated and the presented system is able to predict APT in its early steps with a prediction accuracy of 84.8%.
    • Experiments on deep face recognition using partial faces

      Elmahmudi, Ali A.M.; Ugail, Hassan (2018)
      Face recognition is a very current subject of great interest in the area of visual computing. In the past, numerous face recognition and authentication approaches have been proposed, though the great majority of them use full frontal faces both for training machine learning algorithms and for measuring the recognition rates. In this paper, we discuss some novel experiments to test the performance of machine learning, especially the performance of deep learning, using partial faces as training and recognition cues. Thus, this study sharply differs from the common approaches of using the full face for recognition tasks. In particular, we study the rate of recognition subject to the various parts of the face such as the eyes, mouth, nose and the forehead. In this study, we use a convolutional neural network based architecture along with the pre-trained VGG-Face model to extract features for training. We then use two classifiers namely the cosine similarity and the linear support vector machine to test the recognition rates. We ran our experiments on the Brazilian FEI dataset consisting of 200 subjects. Our results show that the cheek of the face has the lowest recognition rate with 15% while the (top, bottom and right) half and the 3/4 of the face have near 100% recognition rates.
    • Failure Prediction using Machine Learning in a Virtualised HPC System and application

      Bashir, Mohammed; Awan, Irfan U.; Ugail, Hassan; Muhammad, Y. (2019-06)
      Failure is an increasingly important issue in high performance computing and cloud systems. As large-scale systems continue to grow in scale and complexity, mitigating the impact of failure and providing accurate predictions with sufficient lead time remains a challenging research problem. Traditional existing fault-tolerance strategies such as regular check-pointing and replication are not adequate because of the emerging complexities of high performance computing systems. This necessitates the importance of having an effective as well as proactive failure management approach in place aimed at minimizing the effect of failure within the system. With the advent of machine learning techniques, the ability to learn from past information to predict future pattern of behaviours makes it possible to predict potential system failure more accurately. Thus, in this paper, we explore the predictive abilities of machine learning by applying a number of algorithms to improve the accuracy of failure prediction. We have developed a failure prediction model using time series and machine learning, and performed comparison based tests on the prediction accuracy. The primary algorithms we considered are the Support Vector Machine (SVM), Random Forest(RF), k-Nearest Neighbors (KNN), Classi cation and Regression Trees (CART) and Linear Discriminant Analysis (LDA). Experimental results indicates that the average prediction accuracy of our model using SVM when predicting failure is 90% accurate and effective compared to other algorithms. This f inding implies that our method can effectively predict all possible future system and application failures within the system.
    • A Framework to Handle Uncertainties of Machine Learning Models in Compliance with ISO 26262

      Vasudevan, Vinod; Abdullatif, Amr R.A.; Kabir, Sohag; Campean, I. Felician (2022)
      Assuring safety and thereby certifying is a key challenge of many kinds of Machine Learning (ML) Models. ML is one of the most widely used technological solutions to automate complex tasks such as autonomous driving, traffic sign recognition, lane keep assist etc. The application of ML is making a significant contributions in the automotive industry, it introduces concerns related to the safety and security of these systems. ML models should be robust and reliable throughout and prove their trustworthiness in all use cases associated with vehicle operation. Proving confidence in the safety and security of ML-based systems and there by giving assurance to regulators, the certification authorities, and other stakeholders is an important task. This paper proposes a framework to handle uncertainties of ML model to improve the safety level and thereby certify the ML Models in the automotive industry.
    • Gender and smile dynamics

      Ugail, Hassan; Al-dahoud, Ahmad (2019-04-17)
      This chapter is concerned with the discussion of a computational framework to aid with gender classification in an automated fashion using the dynamics of a smile. The computational smile dynamics framework we discuss here uses the spatio-temporal changes on the face during a smile. Specifically, it uses a set of spatial and temporal features on the overall face. These include the changes in the area of the mouth, the geometric flow around facial features and a set of intrinsic features over the face. These features are explicitly derived from the dynamics of the smile. Based on it, a number of distinct dynamic smile parameters can be extracted which can then be fed to a machine learning algorithm for gender classification.
    • Machine Learning for Botnet Detection: An Optimized Feature Selection Approach

      Lefoane, Moemedi; Ghafir, Ibrahim; Kabir, Sohag; Awan, Irfan U. (2021-12)
      Technological advancements have been evolving for so long, particularly Internet of Things (IoT) technology that has seen an increase in the number of connected devices surpass non IoT connections. It has unlocked a lot of potential across different organisational settings from healthcare, transportation, smart cities etc. Unfortunately, these advancements also mean that cybercriminals are constantly seeking new ways of exploiting vulnerabilities for malicious and illegal activities. IoT is a technology that presents a golden opportunity for botnet attacks that take advantage of a large number of IoT devices and use them to launch more powerful and sophisticated attacks such as Distributed Denial of Service (DDoS) attacks. This calls for more research geared towards the detection and mitigation of botnet attacks in IoT systems. This paper proposes a feature selection approach that identifies and removes less influential features as part of botnet attack detection method. The feature selection is based on the frequency of occurrence of the value counts in each of the features with respect to total instances. The effectiveness of the proposed approach is tested and evaluated on a standard IoT dataset. The results reveal that the proposed feature selection approach has improved the performance of the botnet attack detection method, in terms of True Positive Rate (TPR) and False Positive Rate (FPR). The proposed methodology provides 100% TPR, 0% FPR and 99.9976% F-score.
    • A Novel Ensemble Machine Learning for Robust Microarray Data Classification.

      Peng, Yonghong (2006)
      Microarray data analysis and classification has demonstrated convincingly that it provides an effective methodology for the effective diagnosis of diseases and cancers. Although much research has been performed on applying machine learning techniques for microarray data classification during the past years, it has been shown that conventional machine learning techniques have intrinsic drawbacks in achieving accurate and robust classifications. This paper presents a novel ensemble machine learning approach for the development of robust microarray data classification. Different from the conventional ensemble learning techniques, the approach presented begins with generating a pool of candidate base classifiers based on the gene sub-sampling and then the selection of a sub-set of appropriate base classifiers to construct the classification committee based on classifier clustering. Experimental results have demonstrated that the classifiers constructed by the proposed method outperforms not only the classifiers generated by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods (bagging and boosting).
    • A reliability inspired strategy for intelligent performance management with predictive driver behaviour: A case study for a diesel particulate filter

      Doikin, Aleksandr; Campean, I. Felician; Priest, Martin; Lin, C.; Angiolini, E. (2021-08)
      The increase availability of operational data from the fleets of cars in the field offers opportunities to deploy machine learning to identify patterns of driver behaviour. This provides contextual intelligence insight that can be used to design strategies for online optimisation of the vehicle performance, including compliance with stringent legislation. This paper illustrates this approach with a case study for a Diesel Particulate Filter, where machine learning deployed to real world automotive data is used in conjunction with a reliability inspired performance modelling paradigm to design a strategy to enhance operational performance based on predictive driver behaviour. The model-in-the-loop simulation of the proposed strategy on a fleet of vehicles showed significant improvement compared to the base strategy, demonstrating the value of the approach.
    • Safety + AI: A novel approach to update safety models using artificial intelligence

      Gheraibia, Y.; Kabir, Sohag; Aslansefat, K.; Sorokos, I.; Papadopoulos, Y. (2019-09-16)
      Safety-critical systems are becoming larger and more complex to obtain a higher level of functionality. Hence, modeling and evaluation of these systems can be a difficult and error-prone task. Among existing safety models, Fault Tree Analysis (FTA) is one of the well-known methods in terms of easily understandable graphical structure. This study proposes a novel approach by using Machine Learning (ML) and real-time operational data to learn about the normal behavior of the system. Afterwards, if any abnormal situation arises with reference to the normal behavior model, the approach tries to find the explanation of the abnormality on the fault tree and then share the knowledge with the operator. If the fault tree fails to explain the situation, a number of different recommendations, including the potential repair of the fault tree, are provided based on the nature of the situation. A decision tree is utilized for this purpose. The effectiveness of the proposed approach is shown through a hypothetical example of an Aircraft Fuel Distribution System (AFDS).
    • A secure IoT-based modern healthcare system with fault-tolerant decision making process

      Gope, P.; Gheraibia, Y.; Kabir, Sohag; Sikdar, B. (2021-03)
      The advent of Internet of Things (IoT) has escalated the information sharing among various smart devices by many folds, irrespective of their geographical locations. Recently, applications like e-healthcare monitoring has attracted wide attention from the research community, where both the security and the effectiveness of the system are greatly imperative. However, to the best of our knowledge none of the existing literature can accomplish both these objectives (e.g., existing systems are not secure against physical attacks). This paper addresses the shortcomings in existing IoT-based healthcare system. We propose an enhanced system by introducing a Physical Unclonable Function (PUF)-based authentication scheme and a data driven fault-tolerant decision-making scheme for designing an IoT-based modern healthcare system. Analyses show that our proposed scheme is more secure and efficient than existing systems. Hence, it will be useful in designing an advanced IoT-based healthcare system.
    • SmartWall: Novel RFID-enabled Ambient Human Activity Recognition using Machine Learning for Unobtrusive Health Monitoring

      Oguntala, George A.; Abd-Alhameed, Raed A.; Noras, James M.; Hu, Yim Fun; Nnabuike, Eya N.; Ali, N.; Elfergani, Issa T.; Rodriguez, Jonathan (2019-05-16)
      Human activity recognition from sensor readings have proved to be an effective approach in pervasive computing for smart healthcare. Recent approaches to ambient assisted living (AAL) within a home or community setting offers people the prospect of more individually-focused care and improved quality of living. However, most of the available AAL systems are often limited by computational cost. In this paper, a simple, novel non-wearable human activity classification framework using the multivariate Gaussian is proposed. The classification framework augments prior information from the passive RFID tags to obtain more detailed activity profiling. The proposed algorithm based on multivariate Gaussian via maximum likelihood estimation is used to learn the features of the human activity model. Twelve sequential and concurrent experimental evaluations are conducted in a mock apartment environment. The sampled activities are predicted using a new dataset of the same activity and high prediction accuracy is established. The proposed framework suits well for the single and multi-dwelling environment and offers pervasive sensing environment for both patients and carers.
    • Standardising the Capture and Processing of Custody Images

      Jilani, Shelina K.; Ugail, Hassan; Cole, S.; Logan, Andrew J. (2018)
      Custody images are a standard feature of everyday Policing and are commonly used during investigative work to establish whether the perpetrator and the suspect are the same. The process of identification relies heavily on the quality of a custody image because a low-quality image may mask identifying features. With an increased demand for high quality facial images and the requirement to integrate biometrics and machine vision technology to the field of face identification, this research presents an innovative image capture and biometric recording system called the Halo. Halo is a pioneering system which (1) uses machine vision cameras to capture high quality facial images from 8 planes of view (including CCTV simulated), (2) uses high quality video technology to record identification parades and, (3) records biometric data from the face by using a Convolutional Neural Networks (CNN) based algorithm, which is a supervised machine learning technique. Results based on our preliminary experiments have concluded a 100% facial recognition rate for layer 34 within the VGG-Face model. These results are significant for the sector of forensic science, especially digital image capture and facial identification as they highlight the importance of image quality and demonstrates the complementing nature a robust machine learning algorithm has on an everyday Policing process.
    • Towards design and implementation of Industry 4.0 for food manufacturing

      Konur, Savas; Lan, Yang; Thakker, Dhaval; Mokryani, Geev; Polovina, N.; Sharp, J. (2021)
      Today’s factories are considered as smart ecosystems with humans, machines and devices interacting with each other for efficient manufacturing of products. Industry 4.0 is a suite of enabler technologies for such smart ecosystems that allow transformation of industrial processes. When implemented, Industry 4.0 technologies have a huge impact on efficiency, productivity and profitability of businesses. The adoption and implementation of Industry 4.0, however, require to overcome a number of practical challenges, in most cases, due to the lack of modernisation and automation in place with traditional manufacturers. This paper presents a first of its kind case study for moving a traditional food manufacturer, still using the machinery more than one hundred years old, a common occurrence for small- and medium-sized businesses, to adopt the Industry 4.0 technologies. The paper reports the challenges we have encountered during the transformation process and in the development stage. The paper also presents a smart production control system that we have developed by utilising AI, machine learning, Internet of things, big data analytics, cyber-physical systems and cloud computing technologies. The system provides novel data collection, information extraction and intelligent monitoring services, enabling improved efficiency and consistency as well as reduced operational cost. The platform has been developed in real-world settings offered by an Innovate UK-funded project and has been integrated into the company’s existing production facilities. In this way, the company has not been required to replace old machinery outright, but rather adapted the existing machinery to an entirely new way of operating. The proposed approach and the lessons outlined can benefit similar food manufacturing industries and other SME industries.