• Investigation of dynamic characteristics of suspension parameters on a vehicle experiencing steering drift during braking

      Mirza, N.; Hussain, Khalid; Day, Andrew J.; Klaps, J. (2005)
      This paper presents a simulation study into the characteristics of a vehicle experiencing steering drift under straight line braking. Simulation modelling has been performed using a multi-body dynamics analysis based on a model of an actual vehicle. Front and rear suspension parameters have been modelled as rigid links joined with flexible bushes so as to assess their effect on a vehicle while braking. Suspension geometry and alignment settings, which define characteristic responses such as lateral acceleration, yaw velocity, toe, and caster angles of a vehicle in a transient manoeuvre, are primary to a vehicle¿s directional stability. Any symmetric inconsistencies in these settings will potentially affect a vehicle¿s performance. The findings from this research have increased the understanding of the causes of steering drift during braking conditions.
    • Steering drift and wheel movement during braking: parameter sensitivity studies

      Klaps, J.; Day, Andrew J. (2003)
      In spite of the many signi cant improvements in car chassis design over the past two decades, steering drift during braking where the driver must apply a corrective steering torque in order to maintain course can still be experienced under certain conditions while driving. In the past, such drift, or `pull¿, would have been attributed to side-to-side braking torque variation [1], but modern automotive friction brakes and friction materials are now able to provide braking torque with such high levels of consistency that side-to-side braking torque variation is no longer regarded as a cause of steering drift during braking. Consequently, other in uences must be considered. This paper is the rst of two papers to report on an experimental investigation into braking-related steering drift in motor vehicles. Parameters that might in uence steering drift during braking include suspension compliance and steering o set, and these have been investigated to establish the sensitivity of steering drift to such parameters. The results indicate how wheel movement arising from compliance in the front suspension and steering system of a passenger car during braking can be responsible for steering drift during braking. Braking causes changes in wheel alignment which in turn a ect the toe steer characteristics of each wheel and therefore the straight-line stability during braking. It is concluded that a robust design of suspension is possible in which side-to-side variation in toe steer is not a ected by changes in suspension geometry during braking, and that the magnitude of these changes and the relationships between the braking forces and the suspension geometry and compliance require further investigation, which will be presented in the second paper of the two.
    • Steering drift and wheel movement during braking: static and dynamic measurements

      Klaps, J.; Day, Andrew J. (2005)
      This paper reports on an experimental investigation into braking-related steering drift in motor vehicles, and follows on from a previous paper by the authors in which it was concluded that braking can cause changes in wheel alignment that in turn affect the toe-steer characteristics of each wheel and therefore the straight-line stability of the vehicle during braking. Changes in suspension geometry during braking, their magnitude and the relationships between the braking forces and the suspension geometry and compliance are further investigated in an experimental study of wheel movement arising from compliance in the front suspension and the steering system of a passenger car during braking. Using a kinematic and compliance (K&C) test rig, movement of the front wheels and the suspension subframe, together with corresponding changes in suspension and steering geometry under simulated braking conditions, have been measured and compared with dynamic measurements of the centre points of the front wheels. The results have enabled the causes and effects of steering drift during braking to be better understood in the design of front suspension systems for vehicle stability during braking.
    • Wheel movement during braking

      Klaps, J.; Day, Andrew J. (2002)
      An experimental study of wheel movement arising from compliance in the front suspension and steering system of a passenger car during braking is presented. Using a Kinematic and Compliance (K&C) test rig, movement of the front wheels and the suspension sub-frame, together with corresponding changes in suspension / steering geometry under simulated braking conditions, were measured and compared with dynamic measurements of the centre points of the front wheels. The resulting knowledge of front wheel deflections has enabled the causes and effects of steering drift during braking to be better understood in the design of front suspension systems for vehicle stability.