• Effect of TGF-β1 on water retention properties of healthy and osteoarthritic chondrocytes

      Raja, Tehmeena I.; Khaghani, Seyed A.; Zafar, M.S.; Khurshid, Z.; Mozafari, M.; Youseffi, Mansour; Sefat, Farshid (2018)
      Articular cartilage, a connective tissue, contains chondrocytes and glycosaminoglycans (GAGs) which aid in water retention, providing the tissue with its magnificent ability to prevent friction, withstand loads and absorb compressive shocks however, cartilage, does not have the ability to regenerate and repair. Osteoarthritis (OA) is a progressive degenerative disease, which includes reduction of cartilage thickness between two bones in a joint, causing painful bone-to-bone contact. OA affects over 8 million people in the UK alone. , and as the primary causes are unknown, available treatments including surgical and non-surgical techniques which only reduce the symptoms created by the disorder instead of providing a cure. This project focused on utilizing TGF-β1, a cytokine found in elevated amounts in healthy cartilage when compared to degraded cartilage, in order to observe the effects of the growth factor on both healthy and osteoarthritic chondrocytes. The healthy and the osteoarthritic chondrocytes were cultured in two different media (DMEM with and without TGF- β1) before utilizing the SpectraMax M2/M2e plate reader to observe and analyze the effect of TGF-β1 on water retention properties of cells. This has been achieved by quantifying the GAG content using DMMB dye. Results showed that although TGF-β1 did displayed an increase in glycosaminoglycan synthesis, the statistical increase was not vast enough for the alternative hypothesis to be accepted; further experimentation with TGF-β1, alongside other cytokines within the growth factor family is needed to perceive the true influence of the growth factor on un cured degenerative diseases. It was concluded that both the healthy and osteoarthritic cells treated with TGF-β1 absorbed considerably more DMMB in comparison to the cells, suggesting that TGF-β1 indeed works to aid in water retention. TGF-β1 is a key factor to be exploited when constructing treatments for osteoarthritis
    • The role of photonics and natural curing agents of TGF-β1 in treatment of osteoarthritis

      Ahmadi, E.D.; Raja, Tehmeena I.; Khaghani, Seyed A.; Soon, C.F.; Mozafari, M.; Youseffi, Mansour; Sefat, Farshid (2018)
      Osteoarthritis (OA) is a degenerative disease leading to the breakdown of the hyaline cartilage between a varieties of diarthrodial joints such as the knee joint, carpals of the wrist and etc. When the cartilage is affected by trauma or wear and tear, Osteolysis may occur; broken debris of cartilage found within the synovial fluid may be recognised as a pathogen and therefore, the body’s autoimmune response will directly target the cartilage for destruction. Cytokines are proteins/peptides of glycoproteins that are secreted by cells and are involved in interaction and communication between cells. Transforming Growth Factors Beta 1 (TGF-β1) is one of well-known cytokines and had shown many effects on cellular biology including simulation or inhibition of cell proliferation, differentiation, production of extracellular matrix (ECM), remodelling, and producing both hormones and growth factors. On the other hand, Photonics recently play an important role for treatment of OA. The main aim of this review article is to investigate the effect of TGF-β1 in treatment of OA. Other important aim of this work is to explore the broad applications of optics and photonics in biomedical applications including treatment of OA. Biomedical applications of photonics have broad aspects including laser, carbon nanotubes (CNTs), quantum dots (QDs) and graphene and photodynamic therapy (PDT) which discussed in this review paper.