• High-security image encryption based on a novel simple fractional-order memristive chaotic system with a single unstable equilibrium point

      Rahman, Z.S.A.; Jasim, B.H.; Al-Yasir, Yasir I.A.; Abd-Alhameed, Raed A. (2021-12-16)
      Fractional-order chaotic systems have more complex dynamics than integer-order chaotic systems. Thus, investigating fractional chaotic systems for the creation of image cryptosystems has been popular recently. In this article, a fractional-order memristor has been developed, tested, numerically analyzed, electronically realized, and digitally implemented. Consequently, a novel simple three-dimensional (3D) fractional-order memristive chaotic system with a single unstable equilibrium point is proposed based on this memristor. This fractional-order memristor is connected in parallel with a parallel capacitor and inductor for constructing the novel fractional-order memristive chaotic system. The system’s nonlinear dynamic characteristics have been studied both analytically and numerically. To demonstrate the chaos behavior in this new system, various methods such as equilibrium points, phase portraits of chaotic attractor, bifurcation diagrams, and Lyapunov exponent are investigated. Furthermore, the proposed fractional-order memristive chaotic system was implemented using a microcontroller (Arduino Due) to demonstrate its digital applicability in real-world applications. Then, in the application field of these systems, based on the chaotic behavior of the memristive model, an encryption approach is applied for grayscale original image encryption. To increase the encryption algorithm pirate anti-attack robustness, every pixel value is included in the secret key. The state variable’s initial conditions, the parameters, and the fractional-order derivative values of the memristive chaotic system are used for contracting the keyspace of that applied cryptosystem. In order to prove the security strength of the employed encryption approach, the cryptanalysis metric tests are shown in detail through histogram analysis, keyspace analysis, key sensitivity, correlation coefficients, entropy analysis, time efficiency analysis, and comparisons with the same fieldwork. Finally, images with different sizes have been encrypted and decrypted, in order to verify the capability of the employed encryption approach for encrypting different sizes of images. The common cryptanalysis metrics values are obtained as keyspace = 2648, NPCR = 0.99866, UACI = 0.49963, H(s) = 7.9993, and time efficiency = 0.3 s. The obtained numerical simulation results and the security metrics investigations demonstrate the accuracy, high-level security, and time efficiency of the used cryptosystem which exhibits high robustness against different types of pirate attacks.
    • A new fractional-order chaotic system with its analysis, synchronization, and circuit realization for secure communication applications

      Rahman, Z.S.A.; Jasim, B.H.; Al-Yasir, Yasir I.A.; Hu, Yim Fun; Abd-Alhameed, Raed A.; Alhasnawi, B.N. (2021-10-15)
      This article presents a novel four-dimensional autonomous fractional-order chaotic system (FOCS) with multi-nonlinearity terms. Several dynamics, such as the chaotic attractors, equilibrium points, fractal dimension, Lyapunov exponent, and bifurcation diagrams of this new FOCS, are studied analytically and numerically. Adaptive control laws are derived based on Lyapunov theory to achieve chaos synchronization between two identical new FOCSs with an uncertain parameter. For these two identical FOCSs, one represents the master and the other is the slave. The uncertain parameter in the slave side was estimated corresponding to the equivalent master parameter. Next, this FOCS and its synchronization were realized by a feasible electronic circuit and tested using Multisim software. In addition, a microcontroller (Arduino Due) was used to implement the sug-gested system and the developed synchronization technique to demonstrate its digital applicability in real-world applications. Furthermore, based on the developed synchronization mechanism, a secure communication scheme was constructed. Finally, the security analysis metric tests were investigated through histograms and spectrograms analysis to confirm the security strength of the employed communication system. Numerical simulations demonstrate the validity and possibility of using this new FOCS in high-level security communication systems. Furthermore, the secure communication system is highly resistant to pirate attacks. A good agreement between simulation and experimental results is obtained, showing that the new FOCS can be used in real-world applications.
    • A New No Equilibrium Fractional Order Chaotic System, Dynamical Investigation, Synchronization and Its Digital Implementation

      Rahman, Z.S.A.; Jasim, B.H.; Al-Yasir, Yasir I.A.; Abd-Alhameed, Raed A.; Alhasnawi, B.N. (MDPI, 2021-07-06)
      In this paper, a new fractional order chaotic system without equilibrium is proposed, analyti-cally and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigation were used to describe the system dynamical behaviors including, the system equilibria, the chaotic attractors, the bifurcation diagrams and the Lyapunov expo-nents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attrac-tors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive con-trol theory has been developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state varia-bles for the master and slave. Consequently, the update laws of the slave parameters are ob-tained, where the slave parameters are assumed to be uncertain and estimate corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results are obtained by MATLAB and the Arduino Due boards respectively, where a good consistent between the simulation results and the ex-perimental results. indicating that the new fractional order chaotic system is capable of being employed in real-world applications.