• Energy monitoring and quality control of a single screw extruder

      Deng, J.; Li, K.; Harkin-Jones, E.; Price, M.; Karnachi, N.; Kelly, Adrian L.; Vera-Sorroche, Javier; Coates, Philip D.; Brown, Elaine C.; Fei, M.R. (2014-01)
      Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15-20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional-Integral-Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach. (C) 2013 Elsevier Ltd. All rights reserved.
    • Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study

      Abeykoon, Chamil; Kelly, Adrian L.; Brown, Elaine C.; Vera-Sorroche, Javier; Coates, Philip D.; Harkin-Jones, E.; Howell, Ken B.; Deng, J.; Li, K.; Price, M. (2014-12-31)
      Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the experimental measurements. Empirical models are in good agreement with the experimental measurements and hence these can be used in studying process energy behaviour in detail and to identify ways to optimise the process energy efficiency.
    • Low-cost process monitoring for polymer extrusion

      Deng, J.; Li, K.; Harkin-Jones, E.; Price, M.; Fei, M.R.; Kelly, Adrian L.; Vera-Sorroche, Javier; Coates, Philip D.; Brown, Elaine C. (2014)
      Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a 'soft-sensor' approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.
    • Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stability

      Abeykoon, Chamil; Kelly, Adrian L.; Vera-Sorroche, Javier; Brown, Elaine C.; Coates, Philip D.; Deng, J.; Li, K.; Harkin-Jones, E.; Price, M. (2014-12-15)
      Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel.
    • The effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE

      Vera-Sorroche, Javier; Kelly, Adrian L.; Brown, Elaine C.; Gough, Timothy D.; Abeykoon, Chamil; Coates, Philip D.; Deng, J.; Li, K.; Harkin-Jones, E.; Price, M. (2014-11-11)
      In this work, a highly instrumented single screw extruder has been used to study the effect of polymer rheology on the thermal efficiency of the extrusion process. Three different molecular weight grades of high density polyethylene (HDPE) were extruded at a range of conditions. Three geometries of extruder screws were used at several set temperatures and screw rotation speeds. The extruder was equipped with real-time quantification of energy consumption; thermal dynamics of the process were examined using thermocouple grid sensors at the entrance to the die. Results showed that polymer rheology had a significant effect on process energy consumption and thermal homogeneity of the melt. Highest specific energy consumption and poorest homogeneity was observed for the highest viscosity grade of HDPE. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. In particular, specific energy consumption was lower using a barrier flighted screw compared to single flighted screws at the same set conditions. These results highlight the complex nature of extrusion thermal dynamics and provide evidence that rheological properties of the polymer can significantly influence the thermal efficiency of the process. (C) 2014 The Authors. Published by Elsevier B.V. All rights reserved.