• Artificial neural network based modelling and optimization of refined palm oil process

      Tehlah, N.; Kaewpradit, P.; Mujtaba, Iqbal M. (2016-12-05)
      The content and concentration of beta-carotene, tocopherol and free fatty acid is one of the important parameters that affect the quality of edible oil. In simulation based studies for refined palm oil process, three variables are usually used as input parameters which are feed flow rate (F), column temperature (T) and pressure (P). These parameters influence the output concentration of beta-carotene, tocopherol and free fatty acid. In this work, we develop 2 different ANN models; the first ANN model based on 3 inputs (F, T, P) and the second model based on 2 inputs (T and P). Artificial neural network (ANN) models are set up to describe the simulation. Feed forward back propagation neural networks are designed using different architecture in MATLAB toolbox. The effects of numbers for neurons and layers are examined. The correlation coefficient for this study is greater than 0.99; it is in good agreement during training and testing the models. Moreover, it is found that ANN can model the process accurately, and is able to predict the model outputs very close to those predicted by ASPEN HYSYS simulator for refined palm oil process. Optimization of the refined palm oil process is performed using ANN based model to maximize the concentration of beta-carotene and tocopherol at residue and free fatty acid at distillate.
    • Development of molecular distillation based simulation and optimization of refined palm oil process based on response surface methodology

      Tehlah, N.; Kaewpradit, P.; Mujtaba, Iqbal M. (2017-07)
      The deodorization of the refined palm oil process is simulated here using ASPEN HYSYS. In the absence of a library molecular distillation (MD) process in ASPEN HYSYS, first, a single flash vessel is considered to represent a falling film MD process which is simulated for a binary system taken from the literature and the model predictions are compared with the published work based on ASPEN PLUS and DISMOL. Second, the developed MD process is extended to simulate the deodorization process. Parameter estimation technique is used to estimate the Antoine’s parameters based on literature data to calculate the pure component vapor pressure. The model predictions are then validated against the patented results of refining edible oil rich in natural carotenes and vitamin E and simulation results were found to be in good agreement, within a 2% error of the patented results. Third, Response Surface Methodology (RSM) is employed to develop non-linear second-order polynomial equations based model for the deodorization process and the effects of various operating parameters on the performance of the process are studied. Finally, an optimization framework is developed to maximize the concentration of beta-carotene, tocopherol and free fatty acid while optimizing the feed flow rate, temperature and pressure subject to process constrains. The optimum results of feed flow rate, temperature, and pressure were determined as 1291 kg/h, 147 C and 0.0007 kPa respectively, and the concentration responses of beta- carotene, tocopherol and free fatty acid were found to be 0.000575, 0.000937 and 0.999840 respectively.