• Behaviour of Axially Loaded Concrete Filled Stainless Steel Elliptical Stub Columns.

      Lam, Dennis; Gardner, L.; Burdett, M. (2010)
      This paper presents the details of an experimental investigation on the behaviour of axially loaded concrete-filled stainless steel elliptical hollow sections. The experimental investigation was conducted using normal and high strength concrete of 30 and 100 MPa. The current study is based on stub column tests and is therefore limited to cross-section capacity. Based on the equations proposed by the authors on concrete-filled stainless steel circular columns, a new set of equations for the stainless steel concrete-filled elliptical hollow sections were proposed. From the limited data currently available, the equation provides an accurate and consistent prediction of the axial capacity of the composite concrete-filled stainless steel elliptical hollow sections.
    • Design of Composite Stainless Steel Concrete Filled Columns

      Lam, Dennis; Gardner, L. (2007)
      This paper presents the behaviour and design of axially loaded concrete filled stainless steel circular and square hollow sections. The experimental investigation was Conducted using different concrete cube strengths varied from 30 to 100 MPa. The column strengths and load-axial shortening curves were evaluated. The study is limited to cross-section capacity and has not been validated at member level. Comparisons of the tests results together with other available results from the literature have been made with existing design methods for composite carbon steel sections-Eurocode 4 and ACI. It was found that existing design guidance for carbon steel may generally be safely applied to concrete filled stainless steel tubes. though it tends to be over-conservative. A continuous strength method is proposed and it is found to provide the most accurate and consistent prediction of the axial capacity of the composite concrete filled stainless steel hollow sections due largely to the more precise assessment of the contribution of the stainless steel tube to the composite resistance.
    • Structural design of stainless steel concrete filled columns.

      Lam, Dennis; Gardner, L. (2008)
      This paper presents the behaviour and design of axially loaded concrete filled stainless steel circular and square hollow sections. The experimental investigation was conducted using different concrete cube strengths varied from 30 to 100 MPa. The column strengths and load-axial shortening curves were evaluated. The study is limited to cross-section capacity and has not been validated at member level. Comparisons of the tests results together with other available results from the literature have been made with existing design methods for composite carbon steel sections ¿ Eurocode 4 and ACI. It was found that existing design guidance for carbon steel may generally be safely applied to concrete filled stainless steel tubes, though it tends to be over-conservative. A continuous strength method is proposed and it is found to provide the most accurate and consistent prediction of the axial capacity of the composite concrete filled stainless steel hollow sections due largely to the more precise assessment of the contribution of the stainless steel tube to the composite resistance.
    • Testing and analysis of concrete-filled elliptical hollow sections

      Yang, H.; Lam, Dennis; Gardner, L. (2008)
      Concrete-filled steel tubes are gaining increasing prominence in a variety of engineering structures, with the principal cross-section shapes being square, rectangular and circular hollow sections. A recent addition to this range has been that of elliptical hollow sections. The structural response of empty elliptical tubes has been examined in previous studies. In this paper, the cross-sectional axial behaviour of concrete-filled elliptical hollow sections is investigated. An experimental programme comprising a total of 21 test specimens, with three nominal tube thicknesses (4 mm, 5 mm and 6.3 mm) and three concrete grades (C30, C60 and C100) has been performed. The effects of steel tube thickness, concrete strength and constraining factor on elastic stiffness, ductility and ultimate strength were studied. To simulate the effects of concrete shrinkage, the inner surfaces of 6 of the 21 test specimens were coated with grease prior to casting. To investigate confinement effects, a further 6 of the 21 test specimens were loaded through the concrete core only. The results of the tests presented herein were combined with those from previous studies, and compared with existing design provisions for square, rectangular and circular concrete-filled tubes. The design expressions from current European, North American, Japanese, British and Chinese Standards were assessed. On the basis of the comparisons, design recommendations for concrete-filled elliptical hollow sections have been made.