• Experimental study on flexural behavior of ECC-concrete composite beams reinforced with FRP bars

      Ge, W-J.; Ashour, Ashraf F.; Cao, D-F.; Lu, W.; Gao, P.; Yu, J.; Ji, X.; Cai, C. (2019-01-15)
      This paper presents test results of fifteen reinforced engineered cementitious composite (ECC)-concrete beams. The main parameters investigated were the amount and type of reinforcement, and ECC thickness. All reinforced ECC-concrete composite beams tested were classified into four groups according to the amount and type of main longitudinal reinforcement used; three groups were reinforced with FRP, steel and hybrid FRP/steel bars, respectively, having similar tensile capacity, whereas the fourth group had a larger amount of only FRP reinforcement. In each group, four height replacement ratios of ECC to concrete were studied. The test results showed that the moment capacity and stiffness of concrete beams are improved and the crack width can be well controlled when a concrete layer in the tension zone is replaced with an ECC layer of the same thickness. However, the improvement level of ECC-concrete composite beams was controlled by the type and amount of reinforcement used. Based on the simplified constitutive relationships of materials and plane section assumption, three failure modes and their discriminate formulas are developed. Furthermore, simplified formulas for moment capacity calculations are proposed, predicting good agreement with experimental results.
    • Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars

      Ge, W-J.; Ashour, Ashraf F.; Yu, J.; Gao, P.; Cao, D-F.; Cai, C.; Ji, X. (2019-02)
      This paper aims to investigate the flexural behavior of engineered cementitious composite (ECC)-concrete hybrid composite beams reinforced with fiber reinforced polymer (FRP) bars and steel bars. Thirty two hybrid reinforced composite beams having various ECC height replacement ratio and combinations of FRP and steel reinforcements were experimentally tested to failure in flexure. Test results showed that cracking, yield and ultimate moments as well as the stiffness of hybrid and ECC beams are improved compared with traditional concrete beams having the same reinforcement, owing to the excellent tensile properties of ECC materials. The average crack spacing and width decrease with the increase of ECC height replacement ratio. The ductility of hybrid reinforced composite beams is higher than that of traditional reinforced concrete beams while their practical reinforcement ratios are similar. Reinforced ECC beams show considerable energy dissipation capacity owing to ECC’s excellent deformation ability. Considering the constitutive models of materials, compatibility and equilibrium conditions, formulas for the prediction of cracking, yield and ultimate moments as well as deflections of hybrid reinforced ECC-concrete composite beams are developed. The proposed formulas are in good agreement with the experimental results. A comprehensive parametric analysis is, then, conducted to illustrate the effect of reinforcement, ECC and concrete properties on the moment capacity, curvature, ductility and energy dissipation of composite beams.