Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares
View/ Open
spaceweatherfinalsubmitted.pdf (1.357Mb)
Download
Publication date
04/06/2009Rights
© 2009 American Geophysical Union. Reproduced in accordance with the publisher's self-archiving policy.Peer-Reviewed
yes
Metadata
Show full item recordAbstract
The importance of real-time processing of solar data especially for space weather applications is increasing continuously. In this paper, we present an automated hybrid computer platform for the short-term prediction of significant solar flares using SOHO/Michelson Doppler Imager images. This platform is called the Automated Solar Activity Prediction tool (ASAP). This system integrates image processing and machine learning to deliver these predictions. A machine learning-based system is designed to analyze years of sunspot and flare data to create associations that can be represented using computer-based learning rules. An imaging-based real-time system that provides automated detection, grouping, and then classification of recent sunspots based on the McIntosh classification is also created and integrated within this system. The properties of the sunspot regions are extracted automatically by the imaging system and processed using the machine learning rules to generate the real-time predictions. Several performance measurement criteria are used and the results are provided in this paper. Also, quadratic score is used to compare the prediction results of ASAP with NOAA Space Weather Prediction Center (SWPC) between 1999 and 2002, and it is shown that ASAP generates more accurate predictions compared to SWPC.Version
Accepted ManuscriptCitation
Colak T, and Qahwaji RSR (2009) Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather. 7(6).Link to published version
http://www.agu.org/pubs/crossref/2009/2008SW000401.shtmlType
ArticleCollections
Related items
Showing items related by title, author, creator and subject.
-
A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-day Forecasting PatternsPark, S.H.; Leka, K.D.; Kusano, K.; Andries, J.; Barnes, G.; Bingham, S.; Bloomfield, D.S.; McCloskey, A.E.; Delouille, V.; Falconer, D.; et al. (2020-02-19)A crucial challenge to successful flare prediction is forecasting periods that transition between "flare-quiet" and "flare-active." Building on earlier studies in this series in which we describe the methodology, details, and results of flare forecasting comparison efforts, we focus here on patterns of forecast outcomes (success and failure) over multiday periods. A novel analysis is developed to evaluate forecasting success in the context of catching the first event of flare-active periods and, conversely, correctly predicting declining flare activity. We demonstrate these evaluation methods graphically and quantitatively as they provide both quick comparative evaluations and options for detailed analysis. For the testing interval 2016-2017, we determine the relative frequency distribution of two-day dichotomous forecast outcomes for three different event histories (i.e., event/event, no-event/event, and event/no-event) and use it to highlight performance differences between forecasting methods. A trend is identified across all forecasting methods that a high/low forecast probability on day 1 remains high/low on day 2, even though flaring activity is transitioning. For M-class and larger flares, we find that explicitly including persistence or prior flare history in computing forecasts helps to improve overall forecast performance. It is also found that using magnetic/modern data leads to improvement in catching the first-event/first-no-event transitions. Finally, 15% of major (i.e., M-class or above) flare days over the testing interval were effectively missed due to a lack of observations from instruments away from the Earth-Sun line.
-
Solar Feature Catalogues in EGSOZharkova, Valentina V.; Aboudarham, J.; Zharkov, Sergei I.; Ipson, Stanley S.; Benkhalil, Ali K.; Fuller, N. (Springer, 2005)The Solar Feature Catalogues (SFCs) are created from digitized solar images using automated pattern recognition techniques developed in the European Grid of Solar Observation (EGSO) project. The techniques were applied for detection of sunspots, active regions and filaments in the automatically standardized full-disk solar images in Caii K1, Caii K3 and H¿ taken at the Meudon Observatory and white-light images and magnetograms from SOHO/MDI. The results of automated recognition are verified with the manual synoptic maps and available statistical data from other observatories that revealed high detection accuracy. A structured database of the Solar Feature Catalogues is built on the MySQL server for every feature from their recognized parameters and cross-referenced to the original observations. The SFCs are published on the Bradford University web site http://www.cyber.brad.ac.uk/egso/SFC/ with the pre-designed web pages for a search by time, size and location. The SFCs with 9 year coverage (1996¿2004) provide any possible information that can be extracted from full disk digital solar images. Thus information can be used for deeper investigation of the feature origin and association with other features for their automated classification and solar activity forecast.
-
Engineering System Design for Automated Space Weather Forecast. Designing Automatic Software Systems for the Large-Scale Analysis of Solar Data, Knowledge Extraction and the Prediction of Solar Activities Using Machine Learning Techniques.Qahwaji, Rami S.R.; Ipson, Stanley S.; Alomari, Mohammad H. (University of BradfordSchool of Computing, Informatics & Media, 2010-03-03)Coronal Mass Ejections (CMEs) and solar flares are energetic events taking place at the Sun that can affect the space weather or the near-Earth environment by the release of vast quantities of electromagnetic radiation and charged particles. Solar active regions are the areas where most flares and CMEs originate. Studying the associations among sunspot groups, flares, filaments, and CMEs is helpful in understanding the possible cause and effect relationships between these events and features. Forecasting space weather in a timely manner is important for protecting technological systems and human life on earth and in space. The research presented in this thesis introduces novel, fully computerised, machine learning-based decision rules and models that can be used within a system design for automated space weather forecasting. The system design in this work consists of three stages: (1) designing computer tools to find the associations among sunspot groups, flares, filaments, and CMEs (2) applying machine learning algorithms to the associations¿ datasets and (3) studying the evolution patterns of sunspot groups using time-series methods. Machine learning algorithms are used to provide computerised learning rules and models that enable the system to provide automated prediction of CMEs, flares, and evolution patterns of sunspot groups. These numerical rules are extracted from the characteristics, associations, and time-series analysis of the available historical solar data. The training of machine learning algorithms is based on data sets created by investigating the associations among sunspots, filaments, flares, and CMEs. Evolution patterns of sunspot areas and McIntosh classifications are analysed using a statistical machine learning method, namely the Hidden Markov Model (HMM).