BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2007
    Author
    Dahal, Keshav P.
    Chakpitak, N.
    Keyword
    Generator Maintenance Scheduling
    Genetic Algorithms
    Heuristic
    Reliability
    Simulated Annealing
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    The effective maintenance scheduling of power system generators is very important for the economical and reliable operation of a power system. This represents a tough scheduling problem which continues to present a challenge for efficient optimization solution techniques. This paper presents the application of metaheuristic approaches, such as a genetic algorithm (GA), simulated annealing (SA) and their hybrid for generator maintenance scheduling (GMS) in power systems using an integer representation. This paper mainly focuses on the application of GA/SA and GA/SA/heuristic hybrid approaches. GA/SA hybrid uses the probabilistic acceptance criterion of SA within the GA framework. GA/SA/heuristic hybrid combines heuristic approaches within the GA/SA hybrid to seed the initial population. A case study is formulated in this paper as an integer programming problem using a reliability-based objective function and typical problem constraints. The implementation and performance of the metaheuristic approaches and their hybrid for the test case study are discussed. The results obtained are promising and show that the hybrid approaches are less sensitive to the variations of technique parameters and offer an effective alternative for solving the generator maintenance scheduling problem.
    URI
    http://hdl.handle.net/10454/4070
    Version
    No full-text available in the repository
    Citation
    Dahal, K.P. and Chakpitak, N. (2007). Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches. Electric Power Systems Research (EPSR). Vol. 77, No. 7, pp. 771-779.
    Link to publisher’s version
    http://dx.doi.org/10.1016/j.epsr.2006.06.012
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.