BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2007
    Author
    Kendrick, E.
    Kendrick, John
    Knight, K.S,
    Islam, M.S.
    Slater, P.R.
    Keyword
    Fuel-cell technology
    Tetrahedral moieties
    La1-xBa1+xGaO4-x/2 system,
    Cooperative mechanisms
    Fast-ion conduction
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    The need for greater energy efficiency has garnered increasing support for the use of fuel-cell technology, a prime example being the solid-oxide fuel cell1, 2. A crucial requirement for such devices is a good ionic (O2- or H+) conductor as the electrolyte3, 4. Traditionally, fluorite- and perovskite-type oxides have been targeted3, 4, 5, 6, although there is growing interest in alternative structure types for intermediate-temperature (400¿700 °C) solid-oxide fuel cells. In particular, structures containing tetrahedral moieties, such as La1-xCaxMO4-x/2(M=Ta,Nb,P) (refs 7,8), La1-xBa1+xGaO4-x/2 (refs 9,10) and La9.33+xSi6O26+3x/2 (ref. 11), have been attracting considerable attention recently. However, an atomic-scale understanding of the conduction mechanisms in these systems is still lacking; such mechanistic detail is important for developing strategies for optimizing the conductivity, as well as identifying next-generation materials. In this context, we report a combined experimental and computational modelling study of the La1-xBa1+xGaO4-x/2 system, which exhibits both proton and oxide-ion conduction9, 10. Here we show that oxide-ion conduction proceeds via a cooperative 'cog-wheel'-type process involving the breaking and re-forming of Ga2O7 units, whereas the rate-limiting step for proton conduction is intra-tetrahedron proton transfer. Both mechanisms are unusual for ceramic oxide materials, and similar cooperative processes may be important in related systems containing tetrahedral moieties.
    URI
    http://hdl.handle.net/10454/3920
    Version
    No full-text available in the repository
    Citation
    Kendrick, E., Kendrick, J., Knight, K.S. and Islam, M.S. et al. (2007). Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nature Materials. Vol. 6, No. 11, pp. 871-875.
    Link to publisher’s version
    http://dx.doi.org/10.1038/nmat2039
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.