BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Na+/Ca2+ exchange current INa/Ca) and sarcoplasmic reticulum (SR) Ca2+ release in catecholamine-induced cardiac hypertrophy.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2004
    Author
    Hussain, Munir
    Chorvatova, A.
    Hart, G.
    Keyword
    Cardiac hypertrophy
    Sodium/calcium exchange
    Calcium
    Sarcoplasmic reticulum
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Catecholamines that accompany acute physiological stress are also involved in mediating the development of hypertrophy and failure. However, the cellular mechanisms involved in catecholamine-induced cardiac hypertrophy, particularly Ca2+ handling, are largely unknown. We therefore investigated the effects of cardiac hypertrophy, produced by isoprenaline, on INa/Ca and sarcoplasmic reticulum (SR) function in isolated myocytes. Methods: INa/Ca was studied in myocytes from Wistar rats, using descending (+80 to ¿110 mV) voltage ramps under steady state conditions. Myocytes were also loaded with fura-2 and either field stimulated or voltage clamped to assess [Ca2+]i and SR Ca2+ content. Results: Ca2+-dependent, steady state INa/Ca density was increased in hypertrophied myocytes (P<0.05). Ca2+ release from the SR was also increased, whereas resting [Ca2+]i and the rate of decline of [Ca2+]i to control levels were unchanged. SR Ca2+ content, estimated by using 10.0 mmol/l caffeine, was also significantly increased in hypertrophied myocytes, but only when myocytes were held and stimulated from their normal resting potential (¿80 mV) but not from ¿40 mV. However, the rate of decline of caffeine-induced Ca2+ transients or INa/Ca was not significantly different between control and hypertrophied myocytes. Ca2+-dependence of INa/Ca, examined by comparing the slope of the descending phase of the hysteresis plots of INa/Ca vs. [Ca2+]i, was also similar in the two groups of cells. Conclusion: Data show that SR Ca2+ release and SR Ca2+ content were increased in hypertrophied myocytes, despite an increase in the steady state INa/Ca density. The observation that increased SR function occurred only when myocytes were stimulated from ¿80 mV suggests that Na+ influx may play a role in altering Ca2+ homeostasis in hypertrophied cardiac muscle, possibly through increased reverse Na+/Ca2+ exchange, particularly at low stimulation frequencies.
    URI
    http://hdl.handle.net/10454/3890
    Version
    No full-text available in the repository
    Citation
    Chorvatova, A., Gart, G. and Hussain, M. (2004). Na+/Ca2+ exchange current INa/Ca) and sarcoplasmic reticulum (SR) Ca2+ release in catecholamine-induced cardiac hypertrophy. Cardiovascular Research. Vol. 61, No. 2, pp. 278-287.
    Link to publisher’s version
    http://dx.doi.org/10.1016/j.cardiores.2003.11.019
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.