BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    General queueing network models for computer system performance analysis. A maximum entropy method of analysis and aggregation of general queueing network models with application to computer systems.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    El-affendi.pdf (7.820Mb)
    Download
    Publication date
    2009-10-23T11:12:56Z
    Author
    El-Affendi, Mohamed A.
    Supervisor
    Kouvatsos, Demetres D.
    Keyword
    Queueing
    Network models
    Performance analysis
    Maximum entropy formalism
    Markovian queueing theory
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Postgraduate School of Studies in Computing
    Awarded
    1983
    
    Metadata
    Show full item record
    Abstract
    In this study the maximum entropy formalism [JAYN 57] is suggested as an alternative theory for general queueing systems of computer performance analysis. The motivation is to overcome some of the problems arising in this field and to extend the scope of the results derived in the context of Markovian queueing theory. For the M/G/l model a unique maximum entropy solution., satisfying locALl balance is derived independent of any assumptions about the service time distribution. However, it is shown that this solution is identical to the steady state solution of the underlying Marko-v process when the service time distribution is of the generalised exponential (CE) type. (The GE-type distribution is a mixture of an exponential term and a unit impulse function at the origin). For the G/M/1 the maximum entropy solution is identical in form to that of the underlying Markov process, but a GE-type distribution still produces the maximum overall similar distributions. For the GIG11 model there are three main achievements: first, the spectral methods are extended to give exaft formulae for the average number of customers in the system for any G/G/l with rational Laplace transform. Previously, these results are obtainable only through simulation and approximation methods. (ii) secondly, a maximum entropy model is developed and used to obtain unique solutions for some types of the G/G/l. It is also discussed how these solutions can be related to the corresponding stochastic processes. (iii) the importance of the G/GE/l and the GE/GE/l for the analysis of general networks is discussed and some flow processes for these systems are characterised. For general queueing networks it is shown that the maximum entropy solution is a product of the maximum entropy solutions of the individual nodes. Accordingly, existing computational algorithms are extended to cover general networks with FCFS disciplines. Some implementations are suggested and a flow algorithm is derived. Finally, these results are iised to improve existing aggregation methods. In addition, the study includes a number of examples, comparisons, surveys, useful comments and conclusions.
    URI
    http://hdl.handle.net/10454/3743
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.