BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Embedded Local Search Approaches for Routing Optimisation.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2005
    Author
    Cowling, Peter I.
    Keuthen, R.
    Keyword
    Iterated local search
    Local search,
    Travelling salesman
    Variable neighbourhood search
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    This paper presents a new class of heuristics which embed an exact algorithm within the framework of a local search heuristic. This approach was inspired by related heuristics which we developed for a practical problem arising in electronics manufacture. The basic idea of this heuristic is to break the original problem into small subproblems having similar properties to the original problem. These subproblems are then solved using time intensive heuristic approaches or exact algorithms and the solution is re-embedded into the original problem. The electronics manufacturing problem where we originally used the embedded local search approach, contains the Travelling Salesman Problem (TSP) as a major subproblem. In this paper we further develop our embedded search heuristic, HyperOpt, and investigate its performance for the TSP in comparison to other local search based approaches. We introduce an interesting hybrid of HyperOpt and 3-opt for asymmetric TSPs which proves more efficient than HyperOpt or 3-opt alone. Since pure local search seldom yields solutions of high quality we also investigate the performance of the approaches in an iterated local search framework. We examine iterated approaches of Large-Step Markov Chain and Variable Neighbourhood Search type and investigate their performance when used in combination with HyperOpt. We report extensive computational results to investigate the performance of our heuristic approaches for asymmetric and Euclidean Travelling Salesman Problems. While for the symmetric TSP our approaches yield solutions of comparable quality to 2-opt heuristic, the hybrid methods proposed for asymmetric problems seem capable of compensating for the time intensive embedded heuristic by finding tours of better average quality than iterated 3-opt in many less iterations and providing the best heuristic solutions known, for some instance classes.
    URI
    http://hdl.handle.net/10454/3654
    Version
    No full-text available in the repository
    Citation
    Cowling, P.I. and Keuthen, R. (2005). Embedded Local Search Approaches for Routing Optimisation. Computers and Operations Research. Vol. 32, No. 3, pp. 465-490.
    Link to publisher’s version
    http://dx.doi.org/10.1016/S0305-0548(03)00248-X
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.