Show simple item record

dc.contributor.authorKouvatsos, Demetres D.*
dc.contributor.authorAwan, Irfan U.*
dc.contributor.authorAl-Begain, Khalid*
dc.date.accessioned2009-08-11T13:01:32Z
dc.date.available2009-08-11T13:01:32Z
dc.date.issued2003
dc.identifier.citationKouvatsos, D.D., Awan, I.U. and Al-Begain, K. (2003). Computers and Digital - IEE Proceedings Techniques. Vol. 150, No. 2, pp. 75-85.en
dc.identifier.urihttp://hdl.handle.net/10454/3279
dc.descriptionNoen
dc.description.abstractAn analytic framework is devised, based on the principle of maximum entropy (ME), for the performance modelling and evaluation of a wireless GSM/GPRS cell supporting bursty multiple class traffic of voice calls and data packets under complete partitioning (CPS), partial sharing (PSS) and aggregate sharing (ASS) traffic handling schemes. Three distinct open queueing network models (QNMS) under CPS, PSS and ASS, respectively, are described, subject to external compound Poisson traffic processes and generalised exponential (GE) transmission times under a repetitive service blocking mechanism and a complete buffer sharing management rule. Each QNM generally consists of three building block stations, namely a loss system with GSM/GPRS traffic and a system of access and transfer finite capacity queues in tandem dealing with GPRS traffic under head-of-line and discriminatory processor sharing scheduling disciplines, respectively. The analytic methodology is illustrated by focusing on the performance study of the GE-type tandem queueing system for GPRS under a CPS. An ME product-form approximation is characterised leading into a decomposition of the tandem system into individual queues and closed-form ME expressions for state and blocking probabilities are presented. Typical numerical examples are included to validate the ME solutions against simulation and study the effect of external GPRS bursty traffic upon the performance of the cell. Moreover, an overview of recent extensions of the work towards the analysis of a GE-type multiple server finite capacity queue with preemptive resume priorities and its implications towards the performance modelling and evaluation of GSM/GPRS cells with PSS and ASS are included.en
dc.description.sponsorship,en
dc.language.isoenen
dc.relation.isreferencedbyhttp://dx.doi.org/10.1049/ip-cdt:20030278en
dc.subjectGPRSen
dc.subjectBursty multiclass trafficen
dc.subjectMaximum entropyen
dc.subjectPerformance modellingen
dc.subjectWreless cellen
dc.subjectVoice callsen
dc.subjectData packetsen
dc.subjectComplete partitioningen
dc.subjectPartial sharingen
dc.subjectAggregate sharing,en
dc.subjectTraffic handlingen
dc.subjectOpen queueing network modelsen
dc.titlePerformance Modelling of GPRS with Bursty Multi-class Traffic.en
dc.status.refereedYesen
dc.typeArticleen
dc.type.versionNo full-text available in the repositoryen


This item appears in the following Collection(s)

Show simple item record