Show simple item record

dc.contributor.authorKendrick, John*
dc.contributor.authorGourlay, Matthew D.*
dc.contributor.authorLeusen, Frank J.J.*
dc.date.accessioned2009-07-14T14:37:18Z
dc.date.available2009-07-14T14:37:18Z
dc.date.issued14/07/2009
dc.identifier.citationKendrick, J., Gourlay, M.D. and Leusen, F.J.J. (2007). Rationalization of Racemate Resolution: Predicting Spontaneous Resolution through Crystal Structure Prediction. Crystal Growth and Design. Vol. 7, No. 1. pp. 56-63.
dc.identifier.urihttp://hdl.handle.net/10454/3012
dc.descriptionNo
dc.description.abstractCrystal structure prediction simulations are reported on 5-hydroxymethyl-2-oxazolidinone and 4-hydroxymethyl-2-oxazolidinone to establish the feasibility of predicting the spontaneous resolution of racemates of small organic molecules. It is assumed that spontaneous resolution occurs when the enantiomorph is more stable than the racemic solid. The starting point is a gas phase conformational search to locate all low-energy conformations. These conformations are used to predict the possible crystal structures of 5- and 4-hydroxymethyl-2-oxazolidinone. In both cases, the racemic crystal structure is predicted to have the lowest energy. The energy differences between the lowest-energy racemic solids and the lowest-energy enantiomorphs are 0.2 kcal mol-1 for 5-hydroxymethyl-2-oxazolidinone and 0.9 kcal mol-1 for 4-hydroxymethyl-2-oxazolidinone. In the case of 4-hydroxymethyl-2-oxazolidinone, where the racemic crystal is known to be more stable and the experimental crystal structures of both the racemate and the enantiomorph are available, the simulation results match the observed data. For 5-hydroxymethyl-2-oxazolidinone, where only enantiopure crystals are observed experimentally, the known experimental structure is found 1.6 kcal mol-1 above the lowest-energy predicted structure. This work shows that it is possible to predict whether the racemate of a small chiral molecule can be resolved spontaneously, although further advances in the accuracy of lattice energy calculations are required.
dc.language.isoen
dc.subjectLattice energy
dc.subjectConformation
dc.subjectGas phase
dc.subjectOrganic molecule
dc.subjectDigital simulation
dc.subjectCrystal structure
dc.subjectStructure resolution
dc.subjectRacemates
dc.titleRationalization of Racemate Resolution: Predicting Spontaneous Resolution through Crystal Structure Prediction.
dc.status.refereedYes
dc.typeArticle
dc.type.versionNo full-text in the repository
dc.identifier.doihttps://doi.org/10.1021/cg060364o
dc.openaccess.statusclosedAccess


This item appears in the following Collection(s)

Show simple item record