BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Effects of Return Current on Hard X-Ray Photon and Electron Spectra in Solar Flares

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2009-05-18T14:50:54Z
    Author
    Zharkova, Valentina V.
    Gordovskyy, Mykola
    Keyword
    Precipitating Electron Beams
    Hard X-Ray Photon Spectra
    Mean Electron Spectra
    Electric Field
    Solar Flares
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    The effect of a self-induced electric field is investigated analytically and numerically on differential and mean electron spectra produced by beam electrons during their precipitation into a flaring atmosphere as well as on the emitted hard X-ray (HXR) photon spectra. The induced electric field is found to be a constant in upper atmospheric layers and to fall sharply in the deeper atmosphere from some "turning point" occurring either in the corona (for intense and softer beams) or in the chromosphere (for weaker and harder beams). The stronger and softer the beam, the higher the electric field before the turning point and the steeper its decrease after it. Analytical solutions are presented for the electric fields, which are constant or decreasing with depth, and the characteristic "electric" stopping depths are compared with the "collisional" ones. A constant electric field is found to decelerate precipitating electrons and to significantly reduce their number in the upper atmospheric depth, resulting in their differential spectra flattening at lower energies (<100 keV). While a decreasing electric field slows down the electron deceleration, allowing them to precipitate into deeper atmospheric layers than for a constant electric field, the joint effect of electric and collisional energy losses increases the energy losses by lower energy electrons compared to pure collisions and results in maxima at energies of 40-80 keV in the differential electron spectra. This, in turn, leads to the maxima in the mean source electron spectra and to the "double power law" HXR photon spectra (with flattening at lower energies) similar to those reported from the RHESSI observations. The more intense and soft the beams are, the stronger is the lower energy flattening and the higher is the "break" energy where the flattening occurs.
    URI
    http://hdl.handle.net/10454/2657
    Version
    No full-text available in the repository
    Citation
    Zharkova, V.V., Gordovskyy, M. (2006).The Effects of Return Current on Hard X-Ray Photon and Electron Spectra in Solar Flares. The Astrophysical Journal. Vol. 651, pp. 553-565.
    Link to publisher’s version
    http://dx.doi.org/10.1086/506423
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.