• A conditional view of causality

      Weinert, Friedel (2007)
      Causal inference is perhaps the most important form of reasoning in the sciences. A panoply of disciplines, ranging from epidemiology to biology, from econometrics to physics, make use of probability and statistics to infer causal relationships. The social and health sciences analyse population-level data using statistical methods to infer average causal relations. In diagnosis of disease, probabilistic statements are based on population-level causal knowledge combined with knowledge of a particular person¿s symptoms. For the physical sciences, the Salmon-Dowe account develops an analysis of causation based on the notion of process and interaction. In artificial intelligence, the development of graphical methods has leant impetus to a probabilistic analysis of causality. The biological sciences use probabilistic methods to look for evolutionary causes of the state of a current species and to look for genetic causal factors. This variegated situation raises at least two fundamental philosophical issues: about the relation between causality and probability, and about the interpretation of probability in causal analysis. In this book we bring philosophers and scientists together to discuss the relation between causality and probability, and the applications of these concepts within the sciences.
    • The Demons of Science What They Can and Cannot Tell Us About Our World

      Weinert, Friedel (2016)
      The title The Demons of Science may at first appear like a contradiction in terms. Demons are associated with the forces of darkness; science represents the power of light. One could assume, therefore, that science has no time for demons. This book aims to destroy this assumption. Science opens its gates to demons as long as they play a rational rather than an evil part. They are put to work. Demons are figures of thought: they belong to the category of thought experiments, which are routinely employed in science and philosophy. As they are cast as agents with superhuman abilities, we may expect that demons provide us with valuable—albeit non-empirical—clues about the constitution of the physical world. But I am interested in exploring not only what the demons tell us but also what they do not tell us about our world. They are cast as superhuman actors but even demons have their limitations. The following chapters contain, I believe, the first systematic study of the role of demons in scientific and philosophical reasoning about the external world.
    • Einstein and the Laws of Physics

      Weinert, Friedel (2007)
      The purpose of this paper is to highlight the importance of constraints in the theory of relativity and, in particular, what philosophical work they do for Einstein's views on the laws of physics. Einstein presents a view of local ``structure laws'' which he characterizes as the most appropriate form of physical laws. Einstein was committed to a view of science, which presents a synthesis between rational and empirical elements as its hallmark. If scientific constructs are free inventions of the human mind, as Einstein, held, the question arises how such rational constructs, including the symbolic formulation of the laws of physics, can represent physical reality. Representation in turn raises the question of realism. Einstein uses a number of constraints in the theory of relativity to show that by imposing constraints on the rational elements a certain ``fit'' between theory and reality can be achieved. Fit is to be understood as satisfaction of constraint. His emphasis on reference frames in the STR and more general coordinate systems in the GTR, as well as his emphasis on the symmetries of the theory of relativity suggests that Einstein's realism is akin to a certain form of structural realism. His version of structural realism follows from the theory of relativity and is independent of any current philosophical debates about structural realism.
    • EPR and the 'Passage' of Time

      Weinert, Friedel (2013-09)
      The essay revisits the puzzle of the ‘passage’ of time in relation to EPR-type measurements and asks what philosophical consequences can be drawn from them. Some argue that the lack of invariance of temporal order in the measurement of a space-like related EPR pair, under relativistic motion, casts serious doubts on the ‘reality’ of the lapse of time. Others argue that certain features of quantum mechanics establish a tensed theory of time – understood here as Possibilism or the growing block universe. The paper analyzes the employment of frame-invariant entropic clocks in a relativistic setting and argues that tenselessness does not imply timelessness. But this conclusion does not support a tensed theory of time, which requires a preferred foliation. It is argued that the only reliable inference from the EPR example and the use of entropic clocks is an inference not just to a Leibnizian order of the succession of events but a frame-invariant order according to some selected clocks.
    • Hypothetical, not Fictional Worlds

      Weinert, Friedel (2016)
      This paper critically analyzes the fiction-view of scientific modeling, which exploits presumed analogies between literary fiction and model building in science. The basic idea is that in both fiction and scientific modeling fictional worlds are created. The paper argues that the fiction-view comes closest to certain scientific thought experiments, especially those involving demons in science and to literary movements like naturalism. But the paper concludes that the dissimilarities prevail over the similarities. The fiction-view fails to do justice to the plurality of model types used in science; it fails to realize that a function like idealization only makes sense in science because models, unlike works of fiction, can be de-idealized; it fails to distinguish sufficiently between the make-believe (fictional) worlds created in fiction and the hypothetical (as-if) worlds envisaged in models. Representation characterized in the fiction-view as a license to draw inferences does not sufficiently distinguish between inferences in fiction from inferences in scientific modeling. To highlight the contrast the paper proposes to explicate representation in terms of satisfaction of constraints
    • Leibniz’s Defence of Heliocentrism

      Weinert, Friedel (2017-08-17)
      This paper discusses Leibniz’s view and defence of heliocentrism, which was one of the main achievements of the Scientific Revolution (1543-1687). As Leibniz was a defender of a strictly mechanistic worldview, it seems natural to assume that he accepted Copernican heliocentrism and its completion by figures like Kepler, Descartes and Newton without reservation. However, the fact that Leibniz speaks of the Copernican theory as a hypothesis (or plausible assumption) suggests that he had several reservations regarding heliocentrism. On a first approach Leibniz employed two of his most cherished principles to defend the Copernican hypothesis against the proponents of geocentrism: these were the principle of the relativity of motion and the principle of the equivalence of hypotheses. A closer analysis reveals, however, that Leibniz also appeals to dynamic causes of planetary motions, and these constitute a much stronger support for heliocentrism than his two philosophical principles alone.
    • Lines of Descent: Kuhn and Beyond

      Weinert, Friedel (2014-11)
      Thomas S. Kuhn is famous both for his work on the Copernican Revolution and his ‘paradigm’ view of scientific revolutions. But Kuhn later abandoned the notion of paradigm (and related notions) in favour of a more ‘evolutionary’ view of the history of science. Kuhn’s position therefore moved closer to ‘continuity’ models of scientific progress, for instance ‘chain-of-reasoning’ models, originally championed by D. Shapere. The purpose of this paper is to contribute to the debate around Kuhn’s new ‘developmental’ view and to evaluate these competing models with reference to some major innovations in the history of cosmology, from Copernicanism to modern cosmology. This evaluation is made possible through some unexpected overlap between Kuhn’s earlier discontinuity model and various versions of the later continuity models. It is the thesis of this paper that the ‘chain-of-reasoning’ model accounts better for the cosmological evidence than both Kuhn’s early paradigm model and his later developmental view of the history of science.
    • The March of Time: Evolving Conceptions of Time in the Light of Scientific Discoveries

      Weinert, Friedel (2013)
      The aim of this interdisciplinary study is to reconstruct the evolution of our changing conceptions of time in the light of scientific discoveries. It will adopt a new perspective and organize the material around three central themes, which run through our history of time reckoning: cosmology and regularity; stasis and flux; symmetry and asymmetry. It is the physical criteria that humans choose ¿ relativistic effects and time-symmetric equations or dynamic-kinematic effects and asymmetric conditions ¿ that establish our views on the nature of time. This book will defend a dynamic rather than a static view of time.
    • The Scientist as Philosopher

      Weinert, Friedel (2005-01-12)
      This paper examines how such fundamental notions as causality and determinism have undergone changes as a direct result of empirical discoveries. Although such notions are often regarded as metaphysical or a priori concepts, experimental discoveries at the beginning of this century¿radioactive decay, blackbody radiation and spontaneous emission-led to a direct questioning of the notions of causality and determinism. Experimental evidence suggests that these two notions must be separated. Causality and indeterminism are compatible with the behavior of quantum-mechanical systems. The argument also sheds some light on the Duhem-Quine thesis, since experimental results at the periphery of the conceptual scheme directly affect conceptions at the very core.
    • Social Mechanisms and Social Causation

      Weinert, Friedel (2014)
      The aim of this paper is to examine the notion of social mechanisms by comparison with the notions of evolutionary and physical mechanisms. It is argued that social mechanisms are based on trends, and not lawlike regularities, so that social mechanisms are different from mechanisms in the natural sciences. Taking as an example of social causation the abolition of the slave trade, the paper argues that social mechanisms should be incorporated in Weber’s wider notion of adequate causation in order to achieve their explanatory purpose.
    • The Time-Symmetric Gold Universe Reconsidered

      Weinert, Friedel (2016)
      The present article proposes to re-examine the parity-of-reasoning or double-standard fallacy argument, which favours a time-symmetric Gold universe model over a cosmological arrow of time. There are two reasons for this re-examination. One is empirical: 1) the recent discovery of an expanding and accelerating universe questions the symmetry assumption of the Gold universe on empirical grounds; 2) the other is theoretical: the argument from t-symmetry fails to take into account some important aspects of the topology of phase space and recently developed typicality arguments. If the parity-of-reasoning argument, which depends on the t-symmetry of probability, is reconsidered in terms of the topology of phase space and typicality arguments, the double-standard fallacy argument loses much of its appeal. The Gold universe model itself suffers from unexplained dynamic asymmetries. The upshot of this paper is that the Gold universe model is implausible or far less plausible than asymmetric models.
    • Tracing the Arrows of Time

      Weinert, Friedel (2017)
      Over the last century there have been a number of proposals to ground both local and cosmic arrows of time: from the Second law to the Growing Block Universe, from Decoherence to Earman’s time-direction heresy. The latter proposal rejects the traditional association of the Second law of thermodynamics with arrows of time. But it seems that notions like entropy and related notions – phase space volumes and typicality – are not easily banned from discussions of temporal arrows. A close reading of Eddington’s thinking on these questions reveals that his views underwent a considerable development. In particular Eddington abandoned his identification of the arrows of time with the increase in entropy and began to see the Second law as a criterion for temporal arrows. In the process, Eddington also developed an argument against Loschmidt’s reversibility objections, in terms of an expanding universe. This latter argument brings his contribution close to contemporary thinking in terms of Liouville’s theorem, the topology of phase space and typicality arguments. Their reliability to deliver arrows of time will therefore be considered. Are there arrows of time? This question is related to the epistemological views of both Eddington and Wheeler. They insisted on the role of inferences in scientific thinking. Physical reality was to be inferred from data (Eddington) or information (Wheeler) about the physical universe. The paper will conclude that the arrows of time are equally to be regarded as conceptual inferences from various physical criteria – not just entropy – which the universe makes available to us.