Show simple item record

dc.contributor.authorPanesar, Kulvinder
dc.contributor.authorPerez Cabello de Alba, M.B.
dc.date.accessioned2024-11-24T23:08:00Z
dc.date.accessioned2024-11-28T13:51:41Z
dc.date.available2024-11-24T23:08:00Z
dc.date.available2024-11-28T13:51:41Z
dc.date.issued2023-12
dc.identifier.citationPanesar K and Pérez Cabello de Alba MB (2023) Natural language processing-driven framework for the early detection of language and cognitive decline. Journal of Language and Health. 1(2): 20-35.en_US
dc.identifier.urihttp://hdl.handle.net/10454/20154
dc.descriptionYesen_US
dc.description.abstractNatural Language Processing (NLP) technology has the potential to provide a non-invasive, cost-effective method using a timely intervention for detecting early-stage language and cognitive decline in individuals concerned about their memory. The proposed pre-screening language and cognition assessment model (PST-LCAM) is based on the functional linguistic model Role and Reference Grammar (RRG) to analyse and represent the structure and meaning of utterances, via a set of language production and cognition parameters. The model is trained on a DementiaBank dataset with markers of cognitive decline aligned to the global deterioration scale (GDS). A hybrid approach of qualitative linguistic analysis and assessment is applied, which includes the mapping of participants´ tasks of speech utterances and words to RRG phenomena. It uses a metric-based scoring with resulting quantitative scores and qualitative indicators as pre-screening results. This model is to be deployed in a user-centred conversational assessment platform.en_US
dc.languageen
dc.language.isoenen_US
dc.publisherElseveir
dc.rights(c) 2023 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.subjectLanguage productionen_US
dc.subjectMemory concernsen_US
dc.subjectPre-screeningen_US
dc.subjectRole and reference grammaren_US
dc.subjectSpeech assessmenten_US
dc.subjectNatural language processingen_US
dc.titleNatural language processing-driven framework for the early detection of language and cognitive declineen_US
dc.status.refereedYesen_US
dc.date.application2023-10-04
dc.typeArticleen_US
dc.type.versionPublished versionen_US
dc.identifier.doihttps://doi.org/10.1016/j.laheal.2023.09.002en_US
dc.rights.licenseCC-BY-NC-NDen_US
dc.date.updated2024-11-24T23:08:02Z
refterms.dateFOA2024-11-28T13:52:27Z
dc.openaccess.statusopenAccessen_US
dc.date.accepted2023-09-20


Item file(s)

Thumbnail
Name:
1-s2.0-S2949903823000337-mainL ...
Size:
3.079Mb
Format:
PDF
Description:
panesar_and_perez-cabello-de-a ...

This item appears in the following Collection(s)

Show simple item record