View/ Open
hoffmann_et_al_2024 (1.737Mb)
Download
Publication date
2024-09-16Rights
(c) 2024 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)Peer-Reviewed
YesOpen Access status
openAccessAccepted for publication
2024-09-16
Metadata
Show full item recordAbstract
The study presents a new approach for assessing plantarflexor muscles’ function using a smartphone. The test involves performing repeated heel raises for 60 s while seated. The seated heel-rise test offers a simple method for assessing plantarflexor muscles’ function in those with severe balance impairment who are unable to complete tests performed while standing. The study aimed to showcase how gyroscopic data from a smartphone placed on the lower limb can be used to assess the test. Eight participants performed the seated heel-rise test with each limb. Gyroscope and 2D video analysis data (60 Hz) of limb motion were used to determine the number of cycles, the average rise (T-rise), lowering (T-lower), and cycle (T-total) times. The number of cycles detected matched exactly when the gyroscope and kinematic data were compared. There was good time domain agreement between gyroscopic and video data (T-rise = 0.0005 s, T-lower = 0.0013 s, and T-total = 0.0017 s). The 95% CI limits of agreement were small (T-total −0.1118, 0.1127 s, T-lower −0.1152, 0.1179 s, and T-total −0.0763, 0.0797 s). Results indicate that a smartphone placed on the thigh can successfully assess the seated heel-rise test. The seated heel-rise test offers an attractive alternative to test plantarflexor muscles’ functionality in those unable to perform tests in standing positions.Version
Published versionCitation
Hoffmann GO, Borba E, Casarotto EH et al (2024) Smartphone Assessment of the Sitting Heel-Rise Test. Sensors. 24(18): 6036.Link to Version of Record
https://doi.org/10.3390/s24186036Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.3390/s24186036