BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    wahab_et_al_2023 (4.386Mb)
    Download
    Publication date
    2023
    Author
    Wahab, Haroon
    Mehmood, Irfan
    Ugail, Hassan
    Sangaiah, A.K.
    Muhammad, K.
    Keyword
    Machine learning
    Visual computing
    Deep learning
    Capsule endoscopy
    Small bowel
    Precision diagnostic
    Rights
    (c) 2023 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    Peer-Reviewed
    Yes
    Open Access status
    openAccess
    
    Metadata
    Show full item record
    Abstract
    Video capsule endoscopy (VCE) is a revolutionary technology for the early diagnosis of gastric disorders. However, owing to the high redundancy and subtle manifestation of anomalies among thousands of frames, the manual construal of VCE videos requires considerable patience, focus, and time. The automatic analysis of these videos using computational methods is a challenge as the capsule is untamed in motion and captures frames inaptly. Several machine learning (ML) methods, including recent deep convolutional neural networks approaches, have been adopted after evaluating their potential of improving the VCE analysis. However, the clinical impact of these methods is yet to be investigated. This survey aimed to highlight the gaps between existing ML-based research methodologies and clinically significant rules recently established by gastroenterologists based on VCE. A framework for interpreting raw frames into contextually relevant frame-level findings and subsequently merging these findings with meta-data to obtain a disease-level diagnosis was formulated. Frame-level findings can be more intelligible for discriminative learning when organized in a taxonomical hierarchy. The proposed taxonomical hierarchy, which is formulated based on pathological and visual similarities, may yield better classification metrics by setting inference classes at a higher level than training classes. Mapping from the frame level to the disease level was structured in the form of a graph based on clinical relevance inspired by the recent international consensus developed by domain experts. Furthermore, existing methods for VCE summarization, classification, segmentation, detection, and localization were critically evaluated and compared based on aspects deemed significant by clinicians. Numerous studies pertain to single anomaly detection instead of a pragmatic approach in a clinical setting. The challenges and opportunities associated with VCE analysis were delineated. A focus on maximizing the discriminative power of features corresponding to various subtle lesions and anomalies may help cope with the diverse and mimicking nature of different VCE frames. Large multicenter datasets must be created to cope with data sparsity, bias, and class imbalance. Explainability, reliability, traceability, and transparency are important for an ML-based diagnostics system in a VCE. Existing ethical and legal bindings narrow the scope of possibilities where ML can potentially be leveraged in healthcare. Despite these limitations, ML based video capsule endoscopy will revolutionize clinical practice, aiding clinicians in rapid and accurate diagnosis.
    URI
    http://hdl.handle.net/10454/19531
    Version
    Published version
    Citation
    Wahab H, Mehmood I, Ugail H et al (2023) Machine learning based small bowel video capsule endoscopy analysis: Challenges and opportunities. Future Generation Computer Systems. 143: 191-214.
    Link to publisher’s version
    https://doi.org/10.1016/j.future.2023.01.011
    Type
    Article
    Collections
    Engineering and Digital Technology Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.