Adaptive and Robust Multi-Gigabit Techniques Based MmWave Massive MU-MIMO Beamforming For 5G Wireless and Mobile Communications Systems. A Road Map for Simple and Robust Beamforming Scheme and Algorithms Based Wideband MmWave Massive MU-MIMO for 5G Wireless and Mobile Communications Systems

View/ Open
PhD Thesis (12.95Mb)
Download
Publication date
2021Supervisor
Abd-Alhameed, Raed A.Keyword
5G Technologies and BeyondMassive Multi-User Multiple Input Multiple Output (MU-mMIMO)
Indoor/Outdoor mmWave Measurement
Quasi-Orthogonal Space-Time Block Code (QO-STBC) Beamforming
mmWave Hybrid Beamforming
TCM-QAM-OFDM
mmWave Mobile Communications
Antenna array
Spectral efficiency
Low-Resolution DACs/ADCs
Energy efficiency
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Faculty of Engineering and InformaticsAwarded
2021
Metadata
Show full item recordAbstract
Over recent years, the research and studies have focused on innovative solutions in various aspects and phases related to the high demands on data rate and energy for fifth-generation and beyond (B5G). This thesis aims to improve the energy efficiency, error rates, low-resolution ADCs/DACs, antenna array structures and sum-rate performances of a single cell downlink broadband millimetre-wave (mmWave) systems with orthogonal frequency division multiplexing (OFDM) modulation and deploying multi-user massive multiple inputs multiple outputs (MU mMIMO) by applying robust beamforming techniques and detection algorithms that support multiple streams per user (UE) in various environments and scenarios to achieve low complexity system design with reliable performance and significant improvement in users perceived quality of service (QoS). The performance of the four 5G candidate mmWave frequencies, 28 GHz, 39 GHz, 60 GHz, and 73 GHz, are investigated for indoor/outdoor propagation scenarios, including path loss models and multipath delay spread values. Results are compared to confirm that the received power and delay spread is decreased with increasing frequency. The results were also validated with the measurement findings for 60 GHz. Then several proposed design models of beamforming are studied and implemented modified algorithms of Hybrid Beamforming (HBF) approaches in indoor/outdoor scenarios over large scale fading wideband mmWave /Raleigh channels. Firstly, three beamforming based diagonalize the Equivalent Virtual Channel Matrix (EVCM) schemes with the optimal linear combining methods are presented to overcoming the self-interference problems in Quasi-Orthogonal-Space Time Block Code (QO-STBC) systems over narrowband mmWave Single-User mMIMO (SU mMIMO). The evaluated results show that the proposed beamforming based- Single Value Decomposition (SVD) outperforms the conventional beamforming and standard QO-STBC techniques in terms of BER and spectrum efficiency. Next, the proposed HBF algorithm approaches with the fully/ partially connected structures are developed and applied for sum-rate and symbol error rate (SER) performance maximization MU mMIMO-OFDM system, including HBF based on block diagonalization (BD) method Constraint/Unconstraint RF Power, Codebook, Kalman schemes. In addition, the modified near optimal linear HBF-Zero Forcing (HBF-ZF) and HBF-Minimum Mean Square Error (HBF MMSE) schemes, considering both fully-connected and partially-connected structures. Finally, Simulation results using MATLAB platform, demonstrate that the proposed HBF based codebook and most likely HBF based-unconstraint RF power algorithms achieve significant performance gains in terms SER and sum-rate efficiency as well as show high immunity against the deformities and disturbances in the system compared with other HBF algorithm schemes.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
A New mm-Wave Antenna Array with Wideband Characteristics for Next Generation Communication SystemsMunir, M.E.; Al Harbi, A.G.; Kiani, S.H.; Marey, M.; Ojaroudi Parchin, Naser; Khan, J.; Mostafa, H.; Iqbal, J.; Khan, M.A.; See, C.H.; et al. (MDPI, 2022-05-13)This paper presents a planar multi-circular loop antenna with a wide impedance bandwidth for next generation mm-wave systems. The proposed antenna comprises three circular rings with a partial ground plane with a square slot. The resonating structure is designed on a 0.254 mm thin RO5880 substrate with a relative permittivity of 2.3. The single element of the proposed design showed a resonance response from 26.5 to 41 GHz, with a peak gain of 4 dBi and radiation efficiency of 96%. The proposed multicircular ring antenna element is transformed into a four-element array system. The array size is kept at 18.25 × 12.5 × 0.254 mm3 with a peak gain of 11 dBi. The antenna array is fabricated and measured using the in-house facility. The simulated and measured results are well agreed upon and are found to be suitable for mm-wave communication systems.
-
A wide-angle pattern diversity antenna system for mmWave 5G mobile terminalsSadananda, K.G.; Elfergani, Issa T.; Zebiri, C.; Rodriguez, Jonathan; Koul, S.K.; Abd-Alhameed, Raed A. (MDPI, 2022-02)A shared ground shared radiator with wide angular coverage for mmWave 5G smartphones is proposed in this paper. A four-element corporate-fed array with conventional impedance matched power divider is designed. Stepped impedance transformers are integrated with the corner most elements to achieve pattern diversity with wide angular coverage without signifi-cant compromise in gain. The proposed three-port shared radiator conformal commercial an-tenna could be easily integrated with commercial mmWave 5G smartphones. All the three ports’ excitations operate in the 28 GHz band. Radiation pattern bandwidth of the multi-port system is high. The gain variation is from 6 to11 dBi amongst the ports and across the operating spectrum. The highest mutual coupling is 10 dB, in spite of the electrically connected structure. The pro-posed shared radiator element has a wide angular coverage of 100°, maintaining high front-to-back ratio when the respective port is excited. Simulation and measurement results for the proposed structure are illustrated in detail.
-
An Indoor Path Loss Prediction Model using Wall Correction Factors for WLAN and 5G Indoor NetworksObeidat, Huthaifa A.N.; Asif, Rameez; Ali, N.T.; Obeidat, O.A.; Ali, N.T.; Jones, Steven M.R.; Shuaieb, Wafa S.A.; Al-Sadoon, Mohammed A.; Hameed, Khalid W.H.; Alabdullah, A.A.; et al. (2018)A modified indoor path loss prediction model is presented, namely Effective Wall Loss Model (EWLM). The modified model is compared to other indoor path loss prediction models using simulation data and real-time measurements. Different operating frequencies and antenna polarizations are considered to verify the observations. In the simulation part, EWLM shows the best performance among other models as it outperforms two times the dual slope model which is the second-best performance. Similar observations were recorded from the experimental results. Linear attenuation and one slope models have similar behaviour, the two models parameters show dependency on operating frequency and antenna polarization.