BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Novel Multiple Access Quantum Key Distribution Network for Secure Communication. An Investigation into The Use of Laws of Quantum Physics And Communication Protocols To Enable Multiple Clients To Exchange Quantum Keys In A Lan Environment For Secure Communication

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (23.31Mb)
    Download
    Publication date
    2019
    Author
    Saleem, Faisal
    Supervisor
    Kouvatsos, Demetres D.
    Awan, Irfan U.
    Keyword
    Quantum Key Distribution (QKD)
    Network
    Security
    Secure communications
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics
    Awarded
    2019
    
    Metadata
    Show full item record
    Abstract
    Every business and household rely on internet in this day and age. We are using electronic devices connected to the Internet. These devices are generating a considerable amount of data, which is usually transmitted using public/insecure communication channels. On the one hand, the technological advancement of universal connectivity brought so much ease for humans’ race in business, shopping, and financial transactions. The rapid pace of this technological advancement also introduced several concerns in terms of the security and secrecy of data. Security researchers developed several encryption algorithms that are in use to ensure the safety and confidentiality of data. The mathematical difficulty of prime factorisation is the fundamental element of modern encryption algorithms, and they require a considerable amount of processing power to reverse engineer (or break) these algorithms. Scientists and government agencies are trying to build quantum computers to solve some complex problems. These problems include prime factorisation of large numbers, a critical factor in the field of cryptography. Quantum computers are much more potent because of their nature. It processes information by using laws of quantum. The successful development of quantum computers will pit the security and secrecy of our data at risk because it is trivial for the quantum computer to break the currently used encryption algorithms. Bearing this in mind, Research have started working on systems that will provide secure communications in the age of quantum computing. Considering the importance of quantum physics-based communication systems, we have some working examples of these systems, which are called quantum key distribution systems (QKD). These system uses quantum physics to transmit quantum states from one party to another. In case of the presence of Eavesdropping, the whole system will be disturbed, letting both parties know the existence of eve. QKD systems have some success and have different protocols, but until now, they have a very long way to go. When these systems are mature enough, they will require to work with current internet infrastructure, which is very costly and brings so much complexity to the network that it will not be feasible to implement. This thesis proposes a Multiple Access QKD Network integrated with Internet infrastructure to addresses these issues of Secure Communication. The system proposed in this thesis takes existing protocols of data communication, QKD, along with hardware architecture of communication devices. A QKD based client and network switch have been designed and developed along with its operating system to enable multi-access communication in the LAN environment. A simulation model of the model proposed in this thesis has been by using OMNet++ simulation framework to test and evaluate the viability of this model. The proposed QKD mechanism will reduce the complexity for network administrators, reduce the cost of implementation for businesses, and ensure the secrecy and security of the data even in the age of quantum computing.
    URI
    http://hdl.handle.net/10454/19250
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.