BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modelling and Evaluation of Performance, Security and Database Management Trade-offs in Cloud Computing Platforms. An investigation into quantitative modelling and simulation analysis of ‘optimal’ performance, security and database management trade-offs in Cloud Computing Platforms (CCPs), based on Stochastic Activity Networks (SANs) and a three-tier combined metrics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (13.03Mb)
    Download
    Publication date
    2020
    Author
    Akinyemi, Akinwale A.
    Supervisor
    Kouvatsos, Demetres D.
    Keyword
    Performance
    Security
    Database management
    Cloud computing
    Stochastic Activity Networks (SANs)
    Cloud Computing Platforms (CCPs)
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics
    Awarded
    2020
    
    Metadata
    Show full item record
    Abstract
    A framework for the quantitative analysis of performance, security and database management within a network system (e.g. a cloud computing platform) is presented within this research. Our study provides a methodology for modelling and quantitatively generating significant metrics needed in the evaluation of a network system. To narrow this research, a study is carried-out into the quantitative modelling and analysis of performance, security and database management trade-offs in cloud computing platforms, based on Stochastic Activity Networks (SANs) and combined metrics. Cloud computing is an innovative distributed computing archetypal based on the infrastructure of the internet providing computational power, application, storage and infrastructure services. Security mechanisms such as: batch rekeying, intrusion detection, encryption/decryption or security protocols come at the expense of performance and computing resources consumption. Furthermore, database management processing also has an adverse effect on performance especially in the presence of big data. Stochastic Activity Networks (SANs) that offer synchronisation, timeliness and parallelism are proposed for the modelling and quantitative evaluations of ‘optimal’ trade-offs involving performance, security and database management. Performance modelling and analysis of computer network systems has mostly been considered of utmost importance. Quantification of performance for a while has been assessed using stochastic models with a rising interest in the quantification of security stochastic modelling being applied to security problems. Quantitative techniques that includes analytical valuations founded on queuing theory, discrete-event simulations and correlated approximations have been utilised in the examination of performance. Security suffers from the point that no interpretations can be made in an optimal case. The most consequential security metrics are in analogy with reliability metrics. The express rate at which data grows increases the prominence for research into the design and development of cloud computing models that manages the workload intensity and are suitable for data exploration. Handling big data especially within cloud computing is a resource consuming, time-demanding and challenging task that necessitates titanic computational infrastructures to endorse successful data exploration. We present an improved Security State Transition Diagram (SSTD) by adding a new security state (Failed/Freeze state). The presence of this new security state signifies a security position of the computing network system were the implemented security countermeasures cannot handle the security attacks and the system fails completely. In a more sophisticated security system, when the security countermeasure(s) cannot in any form categorise the security attack, the network system is moved to the Failed/Freeze security state. At this security state, the network system can only resume operation when restored by the system administrator. In this study, we propose a cloud computing system model, defined security countermeasures and evaluated the optimisation problems for the trade-offs between performance, security and database management using SANs formalism. We designed, modelled and implemented dependency within our presented security system, developing interaction within the security countermeasures using our proposed Security Group Communication System (SGCS). The choice of Petri-Nets enables the understanding and capturing of specified metrics at different stages of the proposed cloud computing model. In this thesis, an overview of cloud computing including its classification and services is presented in conjunction with a review of existing works of literature. Subsequently, a methodology is proposed for the quantitative analysis of our proposed cloud computing model of performance-security-database trade-offs using Möbius simulator. Additionally, numerical experiments with relevant interpretations are presented and appropriate interpretations are made. We identified that there are system parameters that can be used to optimise the presented abstract combined metrics but they are optimal for neither performance or security or database management independently. Founded on the proposed quantitative simulation model framework, reliable numerical experiments were observed and indicated scope for further extensions of this work. For example, the use of Machine Learning (ML) or Artificial Intelligence (AI) in the predictive and prevention aspects of the security systems.
    URI
    http://hdl.handle.net/10454/19249
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.