View/ Open
Vourdas_Journal_of_Physics_A (337.0Kb)
Download
Publication date
2022-11Author
Vourdas, ApostolosRights
© 2022 IOP Publishing. This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Physics A: Mathematical and Theoretical. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1751-8121/ac9dcf.Peer-Reviewed
YesOpen Access status
openAccess
Metadata
Show full item recordAbstract
Grothendieck's bound is used in the context of a single quantum system, in contrast to previous work which used it for multipartite entangled systems and the violation of Bell-like inequalities. Roughly speaking the Grothendieck theorem considers a 'classical' quadratic form ${\cal C}$ that uses complex numbers in the unit disc, and takes values less than 1. It then proves that if the complex numbers are replaced with vectors in the unit ball of the Hilbert space, then the 'quantum' quadratic form ${\cal Q}$ might take values greater than 1, up to the complex Grothendieck constant $k_\mathrm G$. The Grothendieck theorem is reformulated here in terms of arbitrary matrices (which are multiplied with appropriate normalisation prefactors), so that it is directly applicable to quantum quantities. The emphasis in the paper is in the 'Grothendieck region' $(1,k_\mathrm G)$, which is a classically forbidden region in the sense that ${\cal C}$ cannot take values in it. Necessary (but not sufficient) conditions for ${\cal Q}$ taking values in the Grothendieck region are given. Two examples that involve physical quantities in systems with six and 12-dimensional Hilbert space, are shown to lead to ${\cal Q}$ in the Grothendieck region $(1,k_\mathrm G)$. They involve projectors of the overlaps of novel generalised coherent states that resolve the identity and have a discrete isotropy.Version
Accepted manuscriptCitation
Vourdas A (2022) Grothendieck bound in a single quantum system. Journal of Physics A: Mathematical and Theoretical. 55: 435206.Link to Version of Record
https://doi.org/10.1088/1751-8121/ac9dcfType
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1088/1751-8121/ac9dcf