BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Machine Learning for 3D Visualisation Using Generative Models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (6.004Mb)
    Download
    Publication date
    2020
    Author
    Taif, Khasrouf M.M.
    Supervisor
    Ugail, Hassan
    Mehmoud, Irfan
    Keyword
    Image syntheses
    3D rendering
    Computer graphics
    Shadow generation
    Generative adversarial networks (GANs)
    Multi-colour semantic colour labels
    Computer graphics pipeline
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics. School of Media, Design and Technology
    Awarded
    2020
    
    Metadata
    Show full item record
    Abstract
    One of the state-of-the-art highlights of deep learning in the past ten years is the introduction of generative adversarial networks (GANs), which had achieved great success in their ability to generate images comparable to real photos with minimum human intervention. These networks can generalise to a multitude of desired outputs, especially in image-to-image problems and image syntheses. This thesis proposes a computer graphics pipeline for 3D rendering by utilising generative adversarial networks (GANs). This thesis is motivated by regression models and convolutional neural networks (ConvNets) such as U-Net architectures, which can be directed to generate realistic global illumination effects, by using a semi-supervised GANs model (Pix2pix) that is comprised of PatchGAN and conditional GAN which is then accompanied by a U-Net structure. Pix2pix had been chosen for this thesis for its ability for training as well as the quality of the output images. It is also different from other forms of GANs by utilising colour labels, which enables further control and consistency of the geometries that comprises the output image. The series of experiments were carried out with laboratory created image sets, to pursue the possibility of which deep learning and generative adversarial networks can lend a hand to enhance the pipeline and speed up the 3D rendering process. First, ConvNet is applied in combination with Support Vector Machine (SVM) in order to pair 3D objects with their corresponding shadows, which can be applied in Augmenter Reality (AR) scenarios. Second, a GANs approach is presented to generate shadows for non-shadowed 3D models, which can also be beneficial in AR scenarios. Third, the possibility of generating high quality renders of image sequences from low polygon density 3D models using GANs. Finally, the possibility to enhance visual coherence of the output image sequences of GAN by utilising multi-colour labels. The results of the adopted GANs model were able to generate realistic outputs comparable to the lab generated 3D rendered ground-truth and control group output images with plausible scores on PSNR and SSIM similarity index metrices.
    URI
    http://hdl.handle.net/10454/19220
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.