BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fast and Accurate Image Feature Detection for On-The-Go Field Monitoring Through Precision Agriculture. Computer Predictive Modelling for Farm Image Detection and Classification with Convolution Neural Network (CNN)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (24.24Mb)
    Download
    Publication date
    2020
    Author
    Abdullahi, Halimatu S.
    Supervisor
    Abd-Alhameed, Raed A.
    Sheriff, Ray E.
    Mahieddine, Fatima
    Keyword
    Precision agriculture
    Unmanned aerial vehicle
    Computer vision
    Machine learning
    Remote sensing
    Convolution neural networks
    Image processing
    Classification
    Feature detection
    Optimisation
    Training
    Errors
    Accuracy
    Smart farming
    Plant diagnosis
    Plant health
    Show allShow less
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics, School of Electrical Engineering and Computer Science
    Awarded
    2020
    
    Metadata
    Show full item record
    Abstract
    This study aimed to develop a novel end-to-end plant diagnosis model for the analysis of plant health conditions in near real-time to optimize the rate of production on farmlands for an intensive, yet environmentally safe farming production to preserve the natural environment. First, field research was conducted to determine the extent of the problems faced by farmers in agricultural production. This allowed us to refine the research statement and the level of technology involved in the production processes. The advantages of unmanned aerial systems were exploited in the continuous monitoring of farm plantations to develop automated and accurate measures of farm conditions. To this end, this thesis applies the Precision Agricultural technology as a data based management system that takes into account spatial variations by using the Global Positioning System, Geographical Information System, remote sensing, yield monitors, mapping, and guidance system for variable rate applications. An unmanned aerial vehicle embedded with an optic and radiometric sensor was used to obtain high spectral resolution images of plantation status during normal production/growth cycle. Then, an ensemble of classifiers with Convolution Neural Networks (CNN) was used as off the shelf feature extractor to train images to develop an end-to-end feature detection and multiclass classification system for plant overall health’s conditions. Whereby previous works have concentrated on using CNN as off the shelf feature extractor and model training to detect only plant diseases from plants. To date, no research has yet been carried out to develop an end-to-end model for the overall plant diagnosis system. Previous studies focused on the detection of diseases at any given time, making it difficult to implement comprehensive real-time PA systems. Applying the pretrained model to the new images showed that the model can accurately predict any plant condition with an average of 97% accuracy.
    URI
    http://hdl.handle.net/10454/19206
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.