Fabrication, Characterisation and Optimisation of Biodegradable Scaffolds for Vascular Tissue Engineering Application of PCL and PLGA Electrospun Polymers for Vascular Tissue Engineering

View/ Open
PhD Thesis (12.41Mb)
Download
Publication date
2021Author
Bazgir, MortezaSupervisor
Sefat, FarshidYouseffi, Mansour
Keyword
Tissue engineering of vascular graft (TEVG)Tubular vascular graft (TVG)
Polycaprolactone (PCL)
Poly (lactide-co-glycolic acid) (PLGA)
Degradation
Electrospinning
Nanofibres
Human umbilical vein endothelial cells (HUVEC)
Human vascular fibroblast cells (HVF)
Tensile test
Fabrication
Biodegradable scaffolds
Vascular tissue engineering
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Faculty of Engineering & Informatics, Department of Biomedical and Electronics EngineeringAwarded
2021
Metadata
Show full item recordAbstract
Annually, about 80,000 people die in the United Kingdom due to myocardial infarction, congestive heart failure, stroke, or from other diseases related to blood vessels. The current gold standard treatment for replacing the damaged blood vessel is by autograft procedure, during which the internal mammary artery (IMA) graft or saphenous vein graft (SVG) are usually employed. However, some limitations are associated with this type of treatment, such as lack of donor site and post-surgery problems that could negatively affect the patient’s health. Therefore, this present work aims to fabricate a synthetic blood vessel that mimics the natural arteries and to be used as an alternative method for blood vessel replacement. Polymeric materials intended to be used for this purpose must possess several characteristics including: (1) Polymers must be biocompatible; (2) Biodegradable with adequate degradation rate; (3) Must maintain its structural integrity throughout intended use; (4) Must have ideal mechanical properties; and (5) Must encourage and enhance the proliferation of the cells. The feasibility of using synthetic biodegradable polymers such as poly (ε- caprolactone) (PCL) and poly (lactide-co-glycolic acid) (PLGA) for fabricating tubular vascular grafts was extensively investigated in this work. Many fundamental experiments were performed to develop porous tissue- engineered polymeric membranes for vascular graft purposes through electrospinning technique to achieve the main aim. Electrospinning was selected since the scaffolds produced by this method usually resemble structural morphology similar to the extracellular matrix (ECM). Hence, four 6mm in diameter tubular shape vascular grafts PCL only, PLGA only, coaxial (core-PCL and shell-PLGA), and bilayer (inner layer-PCL and outer layer-PLGA) was designed and fabricated successfully. The structure and properties of each scaffold membrane were observed by scanning electron microscopy (SEM), and these scaffolds were fully characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water contact angle measurements, mechanical tensile test, as well as cell culture studies were carried out by seeding human umbilical vein cells (HUVEC) and human vascular Fibroblast cells (HVF). Moreover, all polymeric grafts underwent degradation process, and the change in their morphological structure properties was studied over 12 weeks at room temperature. All scaffolds were also exposed to a controlled temperature of 37°C for four weeks, in phosphate-buffered saline solution (pH, 7.3). It was found that all scaffolds displayed exceptional fibre structure and excellent degradability with adequate steady weight-loss confirming the suitability of the fabricated scaffolds for tissue engineering applications. The coaxial and bilayer scaffolds degraded at a much slower (and steadier) rate than the singular PCL and PLGA tubular scaffolds. Coaxial grafts fabricated via coaxial needle showed an increase in their fibre diameter and pore size volume than other membranes, but also showed to have significant tensile strength, elongation at fracture, and Young’s modulus. To conclude, all scaffolds have demonstrated to be reliable to adhere and proliferate HUVEC, and HVF cells, but these cells were attracted to the PLGA membrane more than other fabricated membranes.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
LC-MS/MS Confirms That COX-1 Drives Vascular Prostacyclin whilst Gene Expression Pattern Reveals Non-Vascular Sites of COX-2 Expression.Kirkby, N.S.; Zaiss, A.K.; Urquhart, Paula; Jiao, J.; Austin, P.J.; Al-Yamani, M.; Lundberg, M.H.; MacKenzie, L.S.; Warner, T.D.; Nicolaou, Anna; et al. (2013-07-09)There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.
-
The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial DysfunctionSultan, S.A.; Liu, Wanting; Peng, Yonghong; Roberts, Wayne; Whitelaw, D.C.; Graham, Anne M. (2015)Gestational diabetes mellitus (GDM) is known to be associated with fetal endothelial dysfunction, however, the mechanisms are not fully understood. This study examines the effect of maternal diabetes on fetal endothelial function and gene expression under physiological glucose conditions (5 mM). Human umbilical vein endothelial cell (HUVEC) isolated from diabetic mothers (d.HUVEC) grew more slowly than HUVEC isolated from healthy mothers (c.HUVEC) and had delayed doubling time despite increased levels of total vascular endothelial growth factor (VEGF) expression and protein production as determined by real-time PCR and ELISA respectively. Using western blot, the levels of antiproliferative VEGF165b isoform were increased in d.HUVEC relative to c.HUVEC. Successful VEGF165b knockdown by small interfering RNA (siRNA) resulted in increased proliferation of d.HUVEC measured by MTT, compared with negative siRNA control, to similar levels measured in c.HUVEC. In addition, d.HUVEC generated excess levels of ROS as revealed by 2',7' Dichlorodihydrofluorescein Diacetate (DCFH-DA) and Nitrotetrazolium blue (NBT). Using microarray, 102 genes were differentially overexpressed between d.HUVEC versus c.HUVEC (>1.5-fold change; P < 0.05). Functional clustering analysis of these differentially expressed genes revealed participation in inflammatory responses (including adhesion) which may be related to pathological outcomes. Of these genes, ICAM-1 was validated as upregulated, confirming microarray results. Additional confirmatory immunofluorescence staining revealed increased protein expression of ICAM-1 compared with c.HUVEC which was reduced by vitamin C treatment (100 muM). Thus, maternal diabetes induces persistent alterations in fetal endothelial function and gene expression following glucose normalization and antioxidant treatment could help reverse endothelium dysfunction.
-
The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft modelsHussain, Nosheen; Connah, David; Ugail, Hassan; Cooper, Patricia A.; Falconer, Robert A.; Patterson, Laurence H.; Shnyder, Steven D. (2016-08-05)Non-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use.