Show simple item record

dc.contributor.advisorUgail, Hassan
dc.contributor.authorElmahmudi, Ali A.M.
dc.date.accessioned2022-10-05T15:18:47Z
dc.date.available2022-10-05T15:18:47Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/10454/19169
dc.description.abstractFaces are among the most complex stimuli that the human visual system processes. Growing commercial interest in face recognition is encouraging, but it also turns out to be a challenging endeavour. These challenges arise when the situations are complex and cause varied facial appearance due to e.g., occlusion, low-resolution, and ageing. The problem of computer-based face recognition using partial facial data is still largely an unexplored area of research and how does computer interpret various parts of the face. Another challenge is age progression and regression, which is considered to be the most revealing topic for understanding the human face changes during life. In this research, the various computational face recognition models are investigated to overcome the challenges posed by ageing and occlusions/partial faces. For partial face-based face recognition, a pre-trained VGGF model is employed for feature extraction and then followed by popular classifiers such as SVMs and Cosine Similarity CS for classification. In this framework, parts of faces such as eyes, nose, forehead, are used individually for training and testing. The results showing that there is an improvement in recognition in small parts, such as recognition rate in forehead enhanced form about 0% to nearly 35%, eyes from about 22% to approximately 65%. In the second framework, five sub-models were built based on Convolutional Neural Networks (CNNs) and those models are named Eyes-CNNs, Nose-CNNs, Mouth-CNNs, Forehead-CNNs, and combined EyesNose-CNNs. The experimental results illustrate a high recognition rate when it comes to small parts, for example, eyes increased up to about 90.83% and forehead reached about 44.5%. Furthermore, the challenge of face ageing is also approached by proposing an age-template based framework, generating an age-based face template for enhanced face generation and recognition. The results showing that generated new aged faces are more reliable comparing with state-of-the-art.en_US
dc.language.isoenen_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.eng
dc.subjectAverage faceen_US
dc.subjectPartial face recognitionen_US
dc.subjectAge progressionen_US
dc.subjectAge regressionen_US
dc.subjectFace recognition modelsen_US
dc.titleComputational Face Recognition Using Machine Learning Modelsen_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentFaculty of Engineering and Informaticsen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2021
refterms.dateFOA2022-10-05T15:18:47Z


Item file(s)

Thumbnail
Name:
15026086 Ali Elmahmudi - Final ...
Size:
5.125Mb
Format:
PDF
Description:
PhD Thesis

This item appears in the following Collection(s)

Show simple item record