BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fluorescence spectroscopy analysis of fly ash removal from aqueous systems: adsorption of alginate to silica and alumina

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2022-07
    End of Embargo
    2023-07-04
    Author
    Eltaboni, F.
    Singh, Sehaj
    Swanson, L.
    Swift, Thomas
    Almalki, A.S.A.
    Keyword
    Fly ash removal
    Silica
    Alumina
    Alginate
    Water purification
    Rights
    © 2022 Royal Society of Chemistry. Reproduced in accordance with the publisher's self-archiving policy.
    Peer-Reviewed
    Yes
    Open Access status
    embargoedAccess
    
    Metadata
    Show full item record
    Abstract
    Fly ash is a toxic industrial waste, mainly consisting of silica and alumina particles, that has been found discharged into the environment. It is proposed that alginate, a naturally occurring biopolymer, can bind to these minerals and thus play a role in water purification. The binding forces involved in this process consist of weak interactions, such as van der Waals forces and electrostatic interactions. Although the attachment of alginate to mineral surfaces is mainly governed by its carboxylate groups, hydroxyl moieties could play a role in the interaction between the polymer and minerals. This work aims to use the SiO2 and Al2O3 particles as models for fly ash and to show the use of alginate biopolymers (fluorescently labelled with an aminonaphthaline sulfonate fluorophore (AmNS)) to coagulate them. The addition of simple electrolytes like NaCl and CaCl2 encourages the coiling of the polymer chain at high pH values which has an effect on its capability to bind to the inorganic particles. A combination of fluorescence and ICP-MS demonstrated that alginate has a considerable adsorption affinity for Al2O3, whereas it attracts SiO2 weakly. The adsorption process is pH dependent: strong adsorption was observed at low pH values. The dependence of adsorption on the mineral (Al2O3 and SiO2) concentration was also examined under different pH conditions: the adsorption amount was observed to increase by increasing the solid concentration. Adsorption isotherms obtained at low and high mineral concentrations were found to be Henry in type.
    URI
    http://hdl.handle.net/10454/19121
    Version
    Accepted manuscript
    Citation
    Eltaboni F, Singh S, Swanson L, et al (2022) Fluorescence spectroscopy analysis of fly ash removal from aqueous systems: adsorption of alginate to silica and alumina. RSC Soft Matter. 18(30): 5687-5698.
    Link to publisher’s version
    https://doi-org.brad.idm.oclc.org/10.1039/D2SM00558A
    Type
    Article
    Notes
    The full text will be available at the end of the publisher's embargo: 4th July 2023
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.