Show simple item record

dc.contributor.authorKumar, S.
dc.contributor.authorSingh, H.P.
dc.contributor.authorBalaji, S.
dc.contributor.authorHanmaiahgari, P.R.
dc.contributor.authorPu, Jaan H.
dc.date.accessioned2022-07-31T18:49:19Z
dc.date.accessioned2022-08-17T11:12:23Z
dc.date.available2022-07-31T18:49:19Z
dc.date.available2022-08-17T11:12:23Z
dc.date.issued2022-07
dc.identifier.citationKumar S, Singh HP, Balaji S et al (2022) Inclusive hyper- to dilute-concentrated suspended sediment transport study using modified rouse model: parametrized power-linear coupled approach using machine learning. Fluids. 7(8): 261.en_US
dc.identifier.urihttp://hdl.handle.net/10454/19095
dc.descriptionYesen_US
dc.description.abstractThe transfer of suspended sediment can range widely from being diluted to being hyperconcentrated, depending on the local flow and ground conditions. Using the Rouse model and the Kundu and Ghoshal (2017) model, it is possible to look at the sediment distribution for a range of hyper-concentrated and diluted flows. According to the Kundu and Ghoshal model, the sediment flow follows a linear profile for the hyper-concentrated flow regime and a power law applies for the dilute concentrated flow regime. This paper describes these models and how the Kundu and Ghoshal parameters (linear-law coefficients and power-law coefficients) are dependent on sediment flow parameters using machine-learning techniques. The machine-learning models used are XGboost Classifier, Linear Regressor (Ridge), Linear Regressor (Bayesian), K Nearest Neighbours, Decision Tree Regressor, and Support Vector Machines (Regressor). The models were implemented on Google Colab and the models have been applied to determine the relationship between every Kundu and Ghoshal parameter with each sediment flow parameter (mean concentration, Rouse number, and size parameter) for both a linear profile and a power-law profile. The models correctly calculated the suspended sediment profile for a range of flow conditions ( 0.268 𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑50 ≤ 2.29 𝑚𝑚𝑚𝑚, 0.00105 𝑔𝑔 𝑚𝑚𝑚𝑚3 ≤ particle density ≤ 2.65 𝑔𝑔 𝑚𝑚𝑚𝑚3 , 0.197 𝑚𝑚𝑚𝑚 𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠 ≤ 96 𝑚𝑚𝑚𝑚 𝑠𝑠 , 7.16 𝑚𝑚𝑚𝑚 𝑠𝑠 ≤ 𝑢𝑢∗ ≤ 63.3 𝑚𝑚𝑚𝑚 𝑠𝑠 , 0.00042 ≤ 𝑐𝑐̅≤ 0.54), including a range of Rouse numbers (0.0076 ≤ 𝑃𝑃 ≤ 23.5). The models showed particularly good accuracy for testing at low and extremely high concentrations for type I to III profiles.en_US
dc.language.isoenen_US
dc.relation.isreferencedbyhttps://doi.org/10.3390/fluids7080261en_US
dc.rights© 2022 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)en_US
dc.subjectRouse numberen_US
dc.subjectMean concentrationen_US
dc.subjectSuspended sediment transporten_US
dc.subjectSediment size parameteren_US
dc.subjectParameterized power-linear modelen_US
dc.subjectMachine learningen_US
dc.subjectDecision tree regressoren_US
dc.subjectSupport vector machinesen_US
dc.titleInclusive hyper- to dilute-concentrated suspended sediment transport study using modified rouse model: parametrized power-linear coupled approach using machine learningen_US
dc.status.refereedYesen_US
dc.date.Accepted2022-07-21
dc.date.application2022-07-30
dc.typeArticleen_US
dc.type.versionPublished versionen_US
dc.rights.licenseCC-BYen_US
dc.date.updated2022-07-31T18:49:21Z
refterms.dateFOA2022-08-17T11:12:51Z
dc.openaccess.statusopenAccessen_US


Item file(s)

Thumbnail
Name:
fluids-1772072(1).pdf
Size:
630.3Kb
Format:
PDF
Description:
Pu_et_al_Fluids

This item appears in the following Collection(s)

Show simple item record