BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Social Sciences
    • Social Sciences Publications
    • View Item
    •   Bradford Scholars
    • Social Sciences
    • Social Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Exploring the use of speculative design as a participatory approach to more inclusive policy-identification and development in Malaysia

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Yong_et_al_Design_Studies (1.570Mb)
    Download
    Publication date
    2022-07
    Author
    Tsekleves, E.
    Lee, C.A.L.
    Yong, Min Hooi
    Lau, S.L.
    Keyword
    Speculative design
    Participatory design
    Social design
    Design research
    Inclusive design
    Rights
    © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
    Peer-Reviewed
    Yes
    Open Access status
    openAccess
    
    Metadata
    Show full item record
    Abstract
    This Case Study paper presents the first exploration of Speculative Design as a participatory democracy method for navigating the future of ageing in Malaysia. Speculative Design in the context of Global South is emerging, but without much data on how it is applied within different socio-economic conditions from the Global North countries. This Case Study considers the challenges and opportunities of employing Speculative Design as policy identification and development method from the context of Malaysia, a Global South country with its own unique characteristics. The paper concludes by suggesting that the novelty of Speculative Design as a policy-design approach in Global South countries, such as in Malaysia, requires the right selection of provocations and culturally familiar content to ease introduction of the methodology. Also, the efficacy of this approach as a participatory design application would require further enculturation within targeted communities, as well as sustained engagement through Champions.
    URI
    http://hdl.handle.net/10454/19041
    Version
    Published version
    Citation
    Tsekleves E, Lee CAL, Yong MH et al (2022) Exploring the use of speculative design as a participatory approach to more inclusive policy-identification and development in Malaysia. Design Studies. 81: 101118.
    Link to publisher’s version
    https://doi.org/10.1016/j.destud.2022.101118
    Type
    Article
    Collections
    Social Sciences Publications

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      MSF process modelling, simulation and optimisation : impact of non-condensable gases and fouling factor on design and operation. Optimal design and operation of MSF desalination process with non-condensable gases and calcium carbonate fouling, flexible design operation and scheduling under variable demand and seawater temperature using gPROMS.

      Mujtaba, Iqbal M.; Said, Said Alforjani R. (University of BradfordSchool of Engineering, Design and Technology, 2013-11-27)
      Desalination is a technique of producing fresh water from the saline water. Industrial desalination of sea water is becoming an essential part in providing sustainable source of fresh water for a large number of countries around the world. Thermal process being the oldest and most dominating for large scale production of freshwater in today¿s world. Multi-Stage Flash (MSF) distillation process has been used for many years and is now the largest sector in the desalination industry. In this work, a steady state mathematical model of Multistage Flash (MSF) desalination process is developed and validated against the results reported in the literature using gPROMS software. The model is then used for further investigation. First, a steady state calcium carbonate fouling resistance model has been developed and implemented in the full MSF mathematical model developed above using gPROMS modeling tool. This model takes into consideration the effect of stage temperature on the calcium carbonate fouling resistance in the flashing chambers in the heat recovery section, heat rejection section, and brine heaters of MSF desalination plants. The effect of seasonal variation of seawater temperature and top brine temperature on the calcium carbonate fouling resistance has been studied throughout the flashing stage. In addition, the total annual operating cost of the MSF process is selected to minimise, while optimising the operating parameters such as seawater rejected flow rate, brine recycle flow rate and steam temperature at different seawater temperature and fouling resistance. Secondly, an intermediate storage between the plant and the client is considered to provide additional flexibility in design and operation of the MSF process throughout the day. A simple polynomial based dynamic seawater temperature and different freshwater demand correlations are developed based on actual data. For different number of flash stages, operating parameters such as seawater rejected flow rate and brine recycle flow rate are optimised, while the total annual operating cost of the MSF process is selected to minimise.The results clearly show that the advantage of using the intermediate storage tank adds flexible scheduling in the MSF plant design and operation parameters to meet the variation in freshwater demand with varying seawater temperatures without interrupting or fully shutting down the plant at any time during the day by adjusting the number of stages. Furthermore, the effect of non-condensable gases (NCG) on the steady state mathematical model of MSF process is developed and implemented in the MSF model developed earlier. Then the model is used to study effect of NCG on the overall heat transfer coefficient. The simulation results showed a decrease in the overall heat transfer coefficient values as NCG concentrations increased. The model is then used to study the effect of NCG on the design and operation parameters of MSF process for fixed water demand. For a given plant configuration (fixed design) and at different seawater and steam temperatures, a 0.015 wt. % of NCG results in significantly different plant operations when compared with those obtained without the presence of NCG. Finally, for fixed water demand and in the presence of 0.015 wt. % NCGs, the performance is evaluated for different plant configurations and seawater temperature and compared with those obtained without the presence of NCG.
    • Thumbnail

      Design and Implementation of System Components for Radio Frequency Based Asset Tracking Devices to Enhance Location Based Services. Study of angle of arrival techniques, effects of mutual coupling, design of an angle of arrival algorithm, design of a novel miniature reconfigurable antenna optimised for wireless communication systems

      Abd-Alhameed, Raed A.; Noras, James M.; Jones, Steven M.R.; See, Chan H.; Asif, Rameez (University of BradfordFaculty of Engineering and Informatics, 2017)
      The angle of arrival estimation of multiple sources plays a vital role in the field of array signal processing as MIMO systems can be employed at both the transmitter and the receiver end and the system capacity, reliability and throughput can be significantly increased by using array signal processing. Almost all applications require accurate direction of arrival (DOA) estimation to localize the sources of the signals. Another important parameter of localization systems is the array geometry and sensor design which can be application specific and is used to estimate the DOA. In this work, various array geometries and arrival estimation algorithms are studied and then a new scheme for multiple source estimation is proposed and evaluated based on the performance of subspace and non-subspace decomposition methods. The proposed scheme has shown to outperform the conventional Multiple Signal Classification (MUSIC) estimation and Bartlett estimation techniques. The new scheme has a better performance advantage at low and high signal to noise ratio values (SNRs). The research work also studies different array geometries for both single and multiple incident sources and proposes a geometry which is cost effective and efficient for 3, 4, and 5 antenna array elements. This research also considers the shape of the ground plane and its effects on the angle of arrival estimation and in addition it shows how the mutual couplings between the elements effect the overall estimation and how this error can be minimised by using a decoupling matrix. At the end, a novel miniaturised multi element reconfigurable antenna to represent the receiver base station is designed and tested. The antenna radiation patterns in the azimuth angle are almost omni-directional with linear polarisation. The antenna geometry is uniplanar printed logspiral with striplines feeding network and biased components to improve the impedance bandwidth. The antenna provides the benefit of small size, and re-configurability and is very well suited for the asset tracking applications.
    • Thumbnail

      Design and Operation of Multistage Flash (MSF) Desalination: Advanced Control Strategies and Impact of Fouling. Design operation and control of multistage flash desalination processes: dynamic modelling of fouling, effect of non-condensable gases on venting system design and implementation of GMC and fuzzy control

      Mujtaba, Iqbal M.; Alsadaie, Salih M.M. (University of BradfordFaculty of Engineering and Informatics, 2017)
      The rapid increase in the demand on fresh water due the increase in the world population and scarcity of natural water puts more stress on the desalination industrial sector to install more desalination plants around the world. Among these desalination plants, multistage flash desalination process (MSF) is considered to be the most reliable technique of producing potable water from saline water. In recent years, however, the MSF process is confronting many problems to cut off the cost and increase its performance. Among these problems are the non-condensable gases (NCGs) and the accumulation of fouling which they work as heat insulation materials. As a result, the MSF pumps and the heat transfer equipment are overdesigned and consequently increase the capital cost and decrease the performance of the plants. Moreover, improved process control is a cost effective approach to energy conservation and increased process profitability. Thus, this study is motivated by the real absence of detailed kinetic fouling model and implementation of advance process control (APC). To accomplish the above tasks, commercial modelling tools can be utilized to model and simulate MSF process taking into account the NCGs and fouling effect, and optimum control strategy. In this research, gPROMS (general PROcess Modeling System) model builder has been used to develop the MSF process model. First, a dynamic mathematical model of MSF is developed based on the basic laws of mass balance, energy balance and heat transfer. Physical and thermodynamic properties of brine, distillate and water vapour are included to support the model. The model simulation results are validated against actual plant data published in the literature and good agreement with these data is obtained. Second, the design of venting system in MSF plant and the effect of NCGs on the overall heat transfer coefficient (OHTC) are studied. The release rate of NCGs is studied using Henry’s law and the locations of venting points are optimised. The results reveal that high concentration of NCGs heavily affects the OHTC. Furthermore, advance control strategy namely: generic model control (GMC) is designed and introduced to the MSF process to control and track the set points of the two most important variables in the MSF plant; namely the Top Brine Temperature (TBT) which is the output temperature of the brine heater and the Brine Level (BL) in the last stage. The results are compared to conventional Proportional Integral Derivative Controller (PID) and show that GMC controller provides better performance over conventional PID controller to handle a nonlinear system. In addition, a new control strategy called hybrid Fuzzy-GMC is developed and implemented to control the same aforementioned loops. Its results reveal that the new control outperforms the pure GMC in some areas. Finally, a dynamic fouling model is developed and incorporated into the MSF dynamic process model to predict fouling at high temperature and high velocity. The proposed dynamic model considers the attachment and removal mechanisms of calcium carbonate and magnesium hydroxide with more relaxation of the assumptions. Since the MSF plant stages work as a series of heat exchangers, there is a continuous change of temperature, heat flux and salinity of the seawater. The proposed model predicts the behaviour of fouling based on the physical and thermal conditions of every single stage of the plant.
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.