BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Behaviour of continuous concrete T-beams reinforced with hybrid FRP/Steel bars

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (6.321Mb)
    Download
    Publication date
    2020
    Author
    Almahmood, Hanady A.A.
    Supervisor
    Ashour, Ashraf A.
    Sheehan, Therese
    Keyword
    Hybrid reinforced concrete T-beams (HRCT)
    Fibre-reinforced polymer
    Hybrid reinforced system
    Continuous beams
    T-section
    Moment redistribution
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering & Informatics
    Awarded
    2020
    
    Metadata
    Show full item record
    Abstract
    This work aims to investigate the flexural behaviour of continuous hybrid reinforced concrete T-beams (HRCT). The investigations consist of three parts; the computational part, the experimental part and the finite element analysis. The computational part included two parts, the first one is developing an analytical programme using MATLAB software to investigate the moment-curvature behaviour of HRCT-beams and to design the experimental specimens. This was followed by the experimental part, where six full-scale reinforced concrete continuous T beams were prepared and tested. One beam was reinforced with glass fibre reinforced polymer (GFRP) bars while the other five beams were reinforced with a different combination of GFRP and steel bars. The ratio of GFRP to steel reinforcement at both mid-span and middle-support sections was the main parameter investigated. The results showed that adding steel reinforcement to GFRP reinforced concrete T-beams improves the axial stiffness, ductility and serviceability in terms of crack width and deflection control. However, the moment redistribution at failure was limited because of the early yielding of steel reinforcement at the beam section that did not reach its moment capacity and could still carry more loads due to the presence of FRP reinforcement. The second part of the computational part included the comparison between the experimental results with the ultimate moment prediction of ACI 440.2R-17, and with the existing theoretical equations for moment capacity, load capacity, and deflection prediction. It was found that the ACI 440.2R-17 design code equations reasonably estimated the moment capacity of both mid-span and middle-support sections and consequently predicted the load capacity of the HRCT-beams based on fully ductile behaviour. However, Qu's and Safan's equations underestimated the predicted moment and load-capacity of HRCT-beams. Also, Bischoff's and Yoon's models underestimated the deflection at all stages of the load for both GFRP and HRCT- beams. For the numerical part, a three-dimensional finite element model has been developed using ABAQUS software to examine the behaviour of HRCT-beams. The experimental results were used to validate the accuracy of the FEM, where an acceptable agreement between the simulated and experimental results was observed. Accordingly, the model was used to predict the structural behaviour of continuous HRCT-beams by testing different parameters.
    URI
    http://hdl.handle.net/10454/19039
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.