BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A New Beamforming Approach Using 60 GHz Antenna Arrays for Multi–Beams 5G Applications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    al-sadoon_et_al_2022.pdf (5.901Mb)
    Download
    Publication date
    2022-05-30
    Author
    Al-Sadoon, M.A.G.
    Patwary, M.N.
    Zahedi, Y.
    Ojaroudi Parchin, Naser
    Aldelemy, Ahmad
    Abd-Alhameed, Raed A.
    Keyword
    5G
    Antenna arrays
    Beamforming
    Circular patch antenna
    Massive MIMO
    Multi beams
    Uniform sampling
    Weights optimisation
    Rights
    (c) 2022 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)
    Peer-Reviewed
    Yes
    Open Access status
    openAccess
    
    Metadata
    Show full item record
    Abstract
    Recent studies and research have centred on new solutions in different elements and stages to the increasing energy and data rate demands for the fifth generation and beyond (B5G). Based on a new-efficient digital beamforming approach for 5G wireless communication networks, this work offers a compact-size circular patch antenna operating at 60 GHz and covering a 4 GHz spectrum bandwidth. Massive Multiple Input Multiple Output (M–MIMO) and beamforming technology build and simulate an active multiple beams antenna system. Thirty-two linear and sixty-four planar antenna array configurations are modelled and constructed to work as base stations for 5G mobile communication networks. Furthermore, a new beamforming approach called Projection Noise Correlation Matrix (PNCM) is presented to compute and optimise the fed weights of the array elements. The key idea of the PNCM method is to sample a portion of the measured noise correlation matrix uniformly in order to provide the best representation of the entire measured matrix. The sampled data will then be utilised to build a projected matrix using the pseudoinverse approach in order to determine the best fit solution for a system and prevent any potential singularities caused by the matrix inversion process. The PNCM is a low-complexity method since it avoids eigenvalue decomposition and computing the entire matrix inversion procedure and does not require including signal and interference correlation matrices in the weight optimisation process. The suggested approach is compared to three standard beamforming methods based on an intensive Monte Carlo simulation to demonstrate its advantage. The experiment results reveal that the proposed method delivers the best Signal to Interference Ratio (SIR) augmentation among the compared beamformers
    URI
    http://hdl.handle.net/10454/18992
    Version
    Published version
    Citation
    Al-Sadoon MAG, Patwary MN, Zahedi Y et al (2022) A New Beamforming Approach Using 60 GHz Antenna Arrays for Multi–Beams 5G Applications. Electronics. 11: 1739.
    Link to publisher’s version
    https://doi.org/10.3390/electronics11111739
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.