
View/ Open
alvarez_moreno_et_al_2022 (639.8Kb)
Download
Publication date
2022-03-08Keyword
Catalysis in IberoamericaTrends in catalysis
Iberoamerican scientific community
Catalysis for energy
Catalysis for environment
Heterogeneous catalysis
Reaction engineering
Rights
(c) 2022 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/)Peer-Reviewed
YesOpen Access status
openAccess
Metadata
Show full item recordVersion
Published versionCitation
Alvarez Moreno A, Arcelus-Arrillaga P, Ivanova S et al (2022) Editorial: Catalysis in Iberoamerica: Recent Trends. Frontiers in Chemistry. 10: 870084.Link to publisher’s version
https://doi.org/10.3389/fchem.2022.870084Type
EditorialCollections
Related items
Showing items related by title, author, creator and subject.
-
1,4‐Addition of TMSCCl3 to nitroalkenes: efficient reaction conditions and mechanistic understandingWu, Na (Anna); Wahl, B.; Woodward, S.; Lewis, W. (2014-06)Improved synthetic conditions allow preparation of TMSCCl3 in good yield (70 %) and excellent purity. Compounds of the type NBu4X [X=Ph3SiF2 (TBAT), F (tetrabutylammonium fluoride, TBAF), OAc, Cl and Br] act as catalytic promoters for 1,4‐additions to a range of cyclic and acyclic nitroalkenes, in THF at 0–25 °C, typically in moderate to excellent yields (37–95 %). TBAT is the most effective promoter and bromide the least effective. Multinuclear NMR studies (1H, 19F, 13C and 29Si) under anaerobic conditions indicate that addition of TMSCCl3 to TBAT (both 0.13 M ) at −20 °C, in the absence of nitroalkene, leads immediately to mixtures of Me3SiF, Ph3SiF and NBu4CCl3. The latter is stable to at least 0 °C and does not add nitroalkene from −20 to 0 °C, even after extended periods. Nitroalkene, in the presence of TMSCCl3 (both 0.13 M at −20 °C), when treated with TBAT, leads to immediate formation of the 1,4‐addition product, suggesting the reaction proceeds via a transient [Me3Si(alkene)CCl3] species, in which (alkene) indicates an Si⋅⋅⋅O coordinated nitroalkene. The anaerobic catalytic chain is propagated through the kinetic nitronate anion resulting from 1,4 CCl3− addition to the nitroalkene. This is demonstrated by the fact that isolated NBu4[CH2=NO2] is an efficient promoter. Use of H2C=CH(CH2)2CH=CHNO2 in air affords radical‐derived bicyclic products arising from aerobic oxidation.
-
Biocatalytic Amide Condensation and Gelation Controlled by LightSahoo, J.K.; Nalluri, S.K.M.; Javid, Nadeem; Webb, H.; Ulijn, R.V. (2014-03-25)We report on a supramolecular self-assembly system that displays coupled light switching, biocatalytic condensation/hydrolysis and gelation. The equilibrium state of this system can be regulated by light, favouring in situ formation, by protease catalysed peptide synthesis, of self-assembling trans-Azo-YF-NH2 in ambient light; however, irradiation with UV light gives rise to the cis-isomer, which readily hydrolyzes to its amino acid derivatives (cis-Azo-Y + F-NH2) with consequent gel dissolution.
-
QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysisKendrick, John; Sherwood, P.; De Vries, A.H.; Guest, M.F.; Schreckenbach, G.; Catlow, C.R.A.; French, S.A.; Sokol, A.A.; Bromley, S.T.; Thiel, W.; et al. (2003)We describe the work of the European project QUASI (Quantum Simulation in Industry, project EP25047) which has sought to develop a flexible QM/MM scheme and to apply it to a range of industrial problems. A number of QM/MMapproaches were implemented within the computational chemistry scripting system, ChemShell, which provides the framework for deploying a variety of independent program packages. This software was applied in several large-scale QM/MM studies which addressed the catalytic decomposition of N2O by Cu-containing zeolites, the methanol synthesis reaction catalysed by Cu clusters supported on ZnO surfaces, and the modelling of enzyme structure and reactivity.