BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design of an environmentally friendly fuel based on a synthetic composite nano-catalyst through parameter estimation and process modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Main article (461.7Kb)
    Download
    Publication date
    2021-01
    Author
    Jarullah, A.T.
    Muhammed, S.K.
    Al-Tabbakh, B.A.
    Mujtaba, Iqbal M.
    Keyword
    Composite nano-catalyst
    Copper oxide
    Mathematical model
    Nickel oxide
    Parameters estimation
    Rights
    © 2021 de Gruyter. Reproduced in accordance with the publisher's self-archiving policy.
    Peer-Reviewed
    Yes
    Open Access status
    embargoedAccess
    
    Metadata
    Show full item record
    Abstract
    In this paper, oxidative desulfurization (ODS) process is studied for the purpose of removing the sulfur components from light gas oil (LGO) via experimentation and process modeling. A recently developed (by the authors) copper and nickel oxide based composite nano-catalyst is used in the process. The ODS experiments are conducted in a batch reactor and air is used as an oxidizer under moderate operation conditions. Determination of the kinetic parameters with high accuracy is necessary of the related chemical reactions to develop a helpful model for the ODS operation giving a perfect design of the reactor and process with high confidence. High conversion of 92% LGO was obtained under a reaction temperature of 413 K and reaction time of 90 min for synthesized Cu Ni /HY nano-catalyst. Here model based optimization technique incorporating experimental data is used to estimate such parameters. Two approaches (linear and non-linear) are utilized to estimate the best kinematic parameters with an absolute error of less than 5% between the predicted and the experimental results. An environmentally friendly fuel is regarded the main goal of this study, therefore the optimization process is then employed utilizing the validated model of the prepared composite nano-catalyst to get the optimal operating conditions achieving maximum conversion of such process. The results show that the process is effective in removing more than 99% of the sulfur from the LGO resulting in a cleaner fuel.
    URI
    http://hdl.handle.net/10454/18944
    Version
    Accepted manuscript
    Citation
    Jarullah AT, Muhammed SK, Al-Tabbakh BA and Mujtaba IM (2021) Design of an environmentally friendly fuel based on a synthetic composite nano-catalyst through parameter estimation and process modelling. Chemical Product and Process Modeling. Accepted for publication.
    Link to publisher’s version
    https://doi.org/10.1515/cppm-2020-0097
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.