BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Using long term simulations to understand heat transfer processes during steady flow conditions in combined sewers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Mohamed_et_al_Water (7.781Mb)
    Download
    Publication date
    2021-02
    Author
    Abdel-Aal, Mohamad
    Tait, Simon
    Mohamed, Mostafa H.A.
    Schellert, A.
    Keyword
    Modelling
    Wastewater temperature
    Heat transfer between wastewater and in-sewer air
    Wastewater heat recovery
    Rights
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
    Peer-Reviewed
    Yes
    Open Access status
    openAccess
    
    Metadata
    Show full item record
    Abstract
    This paper describes a new heat transfer parameterisation between wastewater and insewer air based on understanding the physical phenomena observed in free surface wastewater and in-sewer air. Long-term wastewater and in-sewer air temperature data were collected and studied to indicate the importance of considering the heat exchange with in-sewer air and the relevant seasonal changes. The new parameterisation was based on the physical flow condition variations. Accurate modelling of wastewater temperature in linked combined sewers is needed to assess the feasibility of in-sewer heat recovery. Historically, the heat transfer coefficient between wastewater and in-sewer air has been estimated using simple empirical relationships. The newly developed parameterisation was implemented and validated using independent long-term flow and temperature datasets. Predictive accuracy of wastewater temperatures was investigated using a Taylor diagram, where absolute errors and correlations between modelled and observed values were plotted for different site sizes and seasons. The newly developed coefficient improved wastewater temperature modelling accuracy, compared with the older empirical approaches, which resulted in predicting more potential for heat recovery from large sewer networks. For individual locations, the RMSE between observed and predicted temperatures ranged between 0.15 and 0.5 °C with an overall average of 0.27 °C. Previous studies showed higher RMSE ranges, e.g., between 0.12 and 7.8 °C, with overall averages of 0.35, 0.42 and 2 °C. The new coefficient has also provided stable values at various seasons and minimised the number of required model inputs.
    URI
    http://hdl.handle.net/10454/18808
    Version
    Published version
    Citation
    Abdel-Aal M, Tait S, Mohamed M et al (2021) Using long term simulations to understand heat transfer processes during steady flow conditions in combined sewers. Water. 13(4): 570.
    Link to publisher’s version
    https://doi.org/10.3390/w13040570
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.