BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Performance enhancement of adsorption desulfurization process via different new nano-catalysts using digital baffle batch reactor and mathematical modeling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Accepted manuscript (796.7Kb)
    Download
    Publication date
    2021-03
    Author
    Nawaf, A.T.
    Hamed, H.H.
    Hameed, S.A.
    Jarullah, A.T.
    Abdulateef, L.T.
    Mujtaba, Iqbal M.
    Keyword
    Adsorption desulfurization
    DBBR
    H2O2
    Nano catalyst
    Mathematical model
    Rights
    © 2021 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    Open Access status
    openAccess
    
    Metadata
    Show full item record
    Abstract
    Several new homemade nano-catalysts are prepared here to reduce sulfur compound found in light gas oil (LGO) utilizing the adsorption desulfurization technique. The effect of different support materials (Fe2O3, Cr2O3 and CdO) having the same particle size (20 nm) on the adsorptive desulfurization performance for loading 5% nickel sulfate (5 wt%NiO) as an active component for each catalyst, is studied. Oxidative desulfurization process (ODS) in a novel digital baffle batch reactor (DBBR) is used to evaluate the performance of the catalysts prepared. Moderate operating conditions are employed for the ODS process. The efficient new nano-catalysts with for the removal of sulfur are found to be 93.4%, 85.6% and 62.1% for NiO/Fe2O3, NiO/Cr2O3 and NiO/CdO, respectively at 175 deg C, 75 min and 2 ml of H2O2. The best kinetic model and the half-live period for the nano-catalysts related to the relevant reactions have also been investigated here.
    URI
    http://hdl.handle.net/10454/18791
    Version
    Accepted manuscript
    Citation
    Nawaf AT, Hamed HH, Hameed SA et al (2021) Performance enhancement of adsorption desulfurization process via different new nano-catalysts using digital baffle batch reactor and mathematical modelling. Chemical Engineering Sciences, 232: 116384.
    Link to publisher’s version
    https://doi.org/10.1016/j.ces.2020.116384
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.