Show simple item record

dc.contributor.authorAl-Waisy, A.S.
dc.contributor.authorAlruban, A.
dc.contributor.authorAl-Fahdawi, S.
dc.contributor.authorQahwaji, Rami S.R.
dc.contributor.authorPonirakis, G.
dc.contributor.authorMalik, R.A.
dc.contributor.authorMohammed, M.A.
dc.contributor.authorKadry, S.
dc.date.accessioned2022-03-15T19:53:45Z
dc.date.accessioned2022-03-16T10:22:18Z
dc.date.available2022-03-15T19:53:45Z
dc.date.available2022-03-16T10:22:18Z
dc.date.issued2022-02-20
dc.identifier.citationAl-Waisy AS, Alruban A, Al-Fahdawi S et al (2022) CellsDeepNet: A Novel Deep Learning-Based Web Application for the Automated Morphometric Analysis of Corneal Endothelial Cells. Mathematics. 10(3): 320.en_US
dc.identifier.urihttp://hdl.handle.net/10454/18782
dc.descriptionYesen_US
dc.description.abstractThe quantification of corneal endothelial cell (CEC) morphology using manual and semi-automatic software enables an objective assessment of corneal endothelial pathology. However, the procedure is tedious, subjective, and not widely applied in clinical practice. We have developed the CellsDeepNet system to automatically segment and analyse the CEC morphology. The CellsDeepNet system uses Contrast-Limited Adaptive Histogram Equalization (CLAHE) to improve the contrast of the CEC images and reduce the effects of non-uniform image illumination, 2D Double-Density Dual-Tree Complex Wavelet Transform (2DDD-TCWT) to reduce noise, Butterworth Bandpass filter to enhance the CEC edges, and moving average filter to adjust for brightness level. An improved version of U-Net was used to detect the boundaries of the CECs, regardless of the CEC size. CEC morphology was measured as mean cell density (MCD, cell/mm2), mean cell area (MCA, µm2), mean cell perimeter (MCP, µm), polymegathism (coefficient of CEC size variation), and pleomorphism (percentage of hexagonality coefficient). The CellsDeepNet system correlated highly significantly with the manual estimations for MCD (r = 0.94), MCA (r = 0.99), MCP (r = 0.99), polymegathism (r = 0.92), and pleomorphism (r = 0.86), with pen_US
dc.language.isoenen_US
dc.rights(c) 2022 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)en_US
dc.subjectComplex wavelet transformen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networken_US
dc.subjectU-Net architectureen_US
dc.subjectCorneal confocal microscopyen_US
dc.subjectCorneal endothelial cellsen_US
dc.titleCellsDeepNet: A Novel Deep Learning-Based Web Application for the Automated Morphometric Analysis of Corneal Endothelial Cellsen_US
dc.status.refereedYesen_US
dc.typeArticleen_US
dc.type.versionPublished versionen_US
dc.identifier.doihttps://doi.org/10.3390/math10030320
dc.rights.licenseCC-BYen_US
dc.date.updated2022-03-15T19:53:49Z
refterms.dateFOA2022-03-16T10:22:38Z
dc.openaccess.statusopenAccessen_US
dc.date.accepted2022-01-18


Item file(s)

Thumbnail
Name:
mathematics-10-00320-v2.pdf
Size:
16.60Mb
Format:
PDF
Description:
al-waisy_et_al_2022

This item appears in the following Collection(s)

Show simple item record