BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Holistic Approach to Dynamic Modelling of Malaria Transmission. An Investigation of Climate-Based Models used for Predicting Malaria Transmission

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (4.520Mb)
    Download
    Publication date
    2020
    Author
    Modu, Babagana
    Supervisor
    Konur, Savas
    Peng, Yonghong
    Asyhari, A.Taufiq
    Keyword
    Agent-based modelling
    Climate-factors
    Mathematical modelling
    Prediction
    Machine learning
    Malaria transmission
    Prevention
    Control
    Intervention
    Malaria
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Faculty of Engineering and Informatics
    Awarded
    2020
    
    Metadata
    Show full item record
    Abstract
    The uninterrupted spread of malaria, besides its seasonal uncertainty, is due to the lack of suitable planning and intervention mechanisms and tools. Several studies have been carried out to understand the factors that affect the development and transmission of malaria, but these efforts have been largely limited to piecemeal specific methods, hence they do not offer comprehensive solutions to predict disease outbreaks. This thesis introduces a ’holistic’ approach to understand the relationship between climate parameters and the occurrence of malaria using both mathematical and computational methods. In this respect, we develop new climate-based models using mathematical, agent-based and data-driven modelling techniques. A malaria model is developed using mathematical modelling to investigate the impact of temperature-dependent delays. Although this method is widely applicable, but it is limited to the study of homogeneous populations. An agent-based technique is employed to address this limitation, where the spatial and temporal variability of agents involved in the transmission of malaria are taken into account. Moreover, whilst the mathematical and agent-based approaches allow for temperature and precipitation in the modelling process, they do not capture other dynamics that might potentially affect malaria. Hence, to accommodate the climatic predictors of malaria, an intelligent predictive model is developed using machine-learning algorithms, which supports predictions of endemics in certain geographical areas by monitoring the risk factors, e.g., temperature and humidity. The thesis not only synthesises mathematical and computational methods to better understand the disease dynamics and its transmission, but also provides healthcare providers and policy makers with better planning and intervention tools.
    URI
    http://hdl.handle.net/10454/18771
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.