Intelligent based Packet Scheduling Scheme using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Technology for 5G. Design and Investigation of Bandwidth Management Technique for Service-Aware Traffic Engineering using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) for 5G

View/ Open
PhD Thesis (3.753Mb)
Download
Publication date
2019Author
Mustapha, Oba Z.Supervisor
Hu, Yim FunAbd-Alhameed, Raed A.
Keyword
Bandwidth managementPacket scheduling
Internet Protocol (IP)
Multi-Protocol Label Switching (MPLS)
Fuzzy algorithm
Neuro-fuzzy algorithm
Quality of Service
Packet Processing Algorithm (PPA)
Traffic engineering (TE)
Weighted Fair Queuing (WFQ)
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Faculty of Engineering and InformaticsAwarded
2019
Metadata
Show full item recordAbstract
Multi-Protocol Label Switching (MPLS) makes use of traffic engineering (TE) techniques and a variety of protocols to establish pre-determined highly efficient routes in Wide Area Network (WAN). Unlike IP networks in which routing decision has to be made through header analysis on a hop-by-hop basis, MPLS makes use of a short bit sequence that indicates the forwarding equivalence class (FEC) of a packet and utilises a predefined routing table to handle packets of a specific FEC type. Thus header analysis of packets is not required, resulting in lower latency. In addition, packets of similar characteristics can be routed in a consistent manner. For example, packets carrying real-time information can be routed to low latency paths across the networks. Thus the key success to MPLS is to efficiently control and distribute the bandwidth available between applications across the networks. A lot of research effort on bandwidth management in MPLS networks has already been devoted in the past. However, with the imminent roll out of 5G, MPLS is seen as a key technology for mobile backhaul. To cope with the 5G demands of rich, context aware and multimedia-based user applications, more efficient bandwidth management solutions need to be derived. This thesis focuses on the design of bandwidth management algorithms, more specifically QoS scheduling, in MPLS network for 5G mobile backhaul. The aim is to ensure the reliability and the speed of packet transfer across the network. As 5G is expected to greatly improve the user experience with innovative and high quality services, users’ perceived quality of service (QoS) needs to be taken into account when deriving such bandwidth management solutions. QoS expectation from users are often subjective and vague. Thus this thesis proposes the use of fuzzy logic based solution to provide service aware and user-centric bandwidth management in order to satisfy requirements imposed by the network and users. Unfortunately, the disadvantage of fuzzy logic is scalability since dependable fuzzy rules and membership functions increase when the complexity of being modelled increases. To resolve this issue, this thesis proposes the use of neuro-fuzzy to solicit interpretable IF-THEN rules.The algorithms are implemented and tested through NS2 and Matlab simulations. The performance of the algorithms are evaluated and compared with other conventional algorithms in terms of average throughput, delay, reliability, cost, packet loss ratio, and utilization rate. Simulation results show that the neuro-fuzzy based algorithm perform better than fuzzy and other conventional packet scheduling algorithms using IP and IP over MPLS technologies.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Design and analysis of energy-efficient media access control protocols in wireless sensor networks. Design and analysis of MAC layer protocols using low duty cycle technique to improve energy efficient and enhance communication performance in wireless sensor networks.Awan, Irfan U.; Ammar, Ibrahim A.M. (University of BradfordSchool of Electrical Engineering and Computer Science, 2015-06-17)Wireless sensor network (WSN) technology has gained significant importance due to its potential support for a wide range of applications. Most of the WSN applications consist of a large numbers of distributed nodes that work together to achieve common objects. Running a large number of nodes requires an efficient mechanism to bring them all together in order to form a multi-hop wireless network that can accomplish some specific tasks. Even with recent developments made in WSN technology, numbers of important challenges still stand as vulnerabilities for WSNs, including energy waste sources, synchronisation leaks, low network capacity and self-configuration difficulties. However, energy efficiency remains the priority challenging problem due to the scarce energy resources available in sensor nodes. These concerns are managed by medium access control (MAC) layer protocols. MAC protocols designed specifically for WSN have an additional responsibility of managing radio activity to conserve energy in addition to the traditional functions. This thesis presents advanced research work carried out in the context of saving energy whilst achieving the desired network performance. Firstly the thesis contributes by proposing Overlapped Schedules for MAC layer, in which the schedules of the neighbour clusters are overlapped by introducing a small shift time between them, aiming to compensate the synchronisation errors. Secondly, this thesis proposed a modified architecture derived from S-MAC protocol which significantly supports higher traffic levels whilst achieving better energy efficiency. This is achieved by applying a parallel transmission concept on the communicating nodes. As a result, the overall efficiency of the channel contention mechanism increases and leads to higher throughput with lower energy consumption. Finally, this thesis proposed the use of the Adaptive scheme on Border Nodes to increase the power efficiency of the system under light traffic load conditions. The scheme focuses on saving energy by forcing the network border nodes to go off when not needed. These three contributions minimise the contention window period whilst maximising the capacity of the available channel, which as a result increase network performance in terms of energy efficiency, throughput and latency. The proposed system is shown to be backwards compatible and able to satisfy both traditional and advanced applications. The new MAC protocol has been implemented and evaluated using NS-2 simulator, under different traffic loads and varying duty cycle values. Results have shown that the proposed solutions are able to significantly enhance the performance of WSNs by improving the energy efficiency, increasing the system throughput and reducing the communication delay.
-
Satellite multiple access protocols for land mobile terminals. A study of the multiple access environment for land mobile satellite terminals, including the design analysis and simulation of a suitable protocol and the evaluation of its performance in a U.K. system.Watson, P.A.; Gardiner, John G.; Fenech, Hector T. (University of BradfordPostgraduate School of Studies in Information Systems Engineering, 2011-08-26)This thesis is a study of multiple access schemes for satellite land mobile systems that provide a domestic or regional service to a large number of small terminals. Three orbit options are studied, namely the geostationary, elliptical (Molniya) and inclined circular orbits. These are investigated for various mobile applications and the choice of the Molniya orbit is justified for a U. K. system. Frequency, Time and Code Division Multiple Access (FDMA, TDMA and CDMA) are studied and their relative merits in the mobile environment are highlighted. A hybrid TDMA/FDMA structure is suggested for a large system. Reservation ALOHA schemes are appraised in a TDMA environment and an adaptive reservation multiple access protocol is proposed and analysed for a wide range of mobile communication traffic profiles. The system can cope with short and long data messages as well as voice calls. Various protocol options are presented and a target system having 100,000 users is considered. Analyses are presented for the steady state of protocols employing pure and slotted ALOHA and for the stabilty of the slotted variant, while simulation techniques were employed to validate the steady state analysis of the slotted ALOHA protocol and to analyse the stability problem of the pure ALOHA version. An innovative technique is put forward to integrate the reservation and the acquisition processes. It employs the geographical spread of the users to form part of the random delay in P-ALOHA. Finally an economic feasibility study is performed for the spacesegment. For costs of capital (r) less than 23 % the discounted payback period is less than the project's lifetime (10 years). At r- 8% the payback period is about 5.6 years, while the internal-rate-of-return is 22.2 %. The net present value at the end of the projects lifetime is £M 70 at r-8%.
-
Innovative Location Based Scheme for Internet Security Protocol. A proposed Location Based Scheme N-Kerberos Security Protocol Using Intelligent Logic of Believes, Particularly by Modified BAN Logic.Hossain, M. Alamgir; Shepherd, Simon J.; Walied, Khalid; Abdelmajid, Nabih T. (University of BradfordDepartment of Computing, 2011-12-07)The importance of the data authentication has resulted in the science of the data protection. Interest in this knowledge has been growing due to the increase in privacy of the user's identity, especially after the widespread use of online transactions. Many security techniques are available to maintain the privacy of the user's identity. These include password, smart card or token and face recognition or finger print. But unfortunately, the possibility to duplicate the identity of a user is still possible. Recently, specialists used the user's physical location as a new factor in order to increase the strength of the verification of the user's identity. This thesis focused on the authentication-based user's location. It is based on the idea of using the Global Position System in order to verify the user identity. Improving Kerberos protocol using GPS signal is proposed in order to eliminate the effect of replay attack. This proposal does not expect a high performance from the user during the implementation of the security system. Moreover, to give users more confidence to use security protocol, it has to be evaluated before accepting it. Thus, a measurement tool used to validate protocols called BAN logic was described. In this thesis, a new form of BAN logic which aims to raise the efficiency checking process of the protocol protection strength using the GPS signal is proposed. The proposed form of Kerberos protocol has been analysed using the new form of BAN logic. The new scheme has been tested and compared with the existing techniques to demonstrate its merits and capabilities.