BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Enhancement and underlying mechanisms of stainless steel wires to fatigue properties of concrete under flexure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2022-02
    End of Embargo
    2022-12-10
    Author
    Dong, S.
    Wang, X.
    Ashour, Ashraf F.
    Han, B.
    Ou, J.
    Keyword
    Stainless steel wire
    Flexural fatigue property
    Reactive powder concrete
    Damage
    Microstructures
    Rights
    © 2021 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    Peer-Reviewed
    Yes
    Open Access status
    Green
    
    Metadata
    Show full item record
    Abstract
    In this study, the enhancement of stainless steel wires (SSWs) to the flexural fatigue performance of reactive powder concrete (RPC) including fatigue life and fatigue stress-strain hysteresis relationship as well as fatigue damage were investigated, and the underlying mechanisms were explored through microstructure observation and characteristic analyses of hydration products. The average flexural fatigue life of RPC is increased by 636.6%, 558.3% and 1010.7% at the maximum stress levels of 0.7, 0.8 and 0.9 when 1.5 vol.% SSWs are incorporated. The method of moments and method of maximum likelihood are employed to calculate the scale and shape parameters for fatigue life subscribed to Weibull distribution. The calculated ratio of flexural fatigue endurance limit to static flexural strength for SSWs reinforced RPC reaches up to 0.64. The incorporation of SSWs decreases the flexural failure damage of RPC by 41.5% and converts the long and link-up micro cracks into emission cracks centered on SSWs. Benefited from the large specific surface area of SSWs, abound of silica fume with pozzolanic activity absorbs on the surface of SSWs and continues to hydrate, reducing the surrounding water-binder ratio to form a microstructure enhancement zone with SSWs as the core and improve the homogeneity of RPC. This can be confirmed by the decrease of porosity, Ca(OH)2 crystal orientation index and molar ratio of CaO to SiO2 for calcium silicate hydrate gels. SSWs can also enhance the fatigue performance of RPC by transmitting hydration heat, inhibiting the initiation and propagation of micro cracks especially at the initial stage of fatigue load, bridging cracks and being pulled-off. The excellent flexural fatigue properties and homogeneous microstructures of SSWs reinforced RPC make it particularly suitable for large-span and ultra-thin elements in extreme service environments.
    URI
    http://hdl.handle.net/10454/18699
    Version
    Accepted manuscript
    Citation
    Dong S, Wang X, Ashour AF et al (2022) Enhancement and underlying mechanisms of stainless steel wires to fatigue properties of concrete under flexure. Cement and Concrete Composites. 126: 104372.
    Link to publisher’s version
    https://doi.org/10.1016/j.cemconcomp.2021.104372
    Type
    Article
    Notes
    The full-text of this article will be released for public view at the end of the publisher embargo on 10 Dec 2022.
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.