Show simple item record

dc.contributor.authorUglanov, Alexey
dc.contributor.authorKartashev, K.
dc.contributor.authorCampean, Felician
dc.contributor.authorDoikin, Aleksandr
dc.contributor.authorAbdullatif, Amr R.A.
dc.contributor.authorAngiolini, E.
dc.contributor.authorLin, C.
dc.contributor.authorZhang, Q.
dc.date.accessioned2021-12-10T17:22:41Z
dc.date.accessioned2021-12-21T14:39:22Z
dc.date.available2021-12-10T17:22:41Z
dc.date.available2021-12-21T14:39:22Z
dc.date.issued2022
dc.identifier.citationUglanov A, Kartashev K, Campean IF et al (2022) Driver Behaviour Modelling: Travel Prediction Using Probability Density Function. In: Jansen T, Jensen R, Mac Parthaláin N et al (eds) Advances in Computational Intelligence Systems. UKCI 2021. Advances in Intelligent Systems and Computing. Springer, Cham. 1409: 545-556.
dc.identifier.urihttp://hdl.handle.net/10454/18692
dc.descriptionNo
dc.description.abstractThis paper outlines the current challenges of driver behaviour modelling for real-world applications and presents the novel method to identify the pattern of usage to predict upcoming journeys in probability sense. The primary aim is to establish similarity between observed behaviour of drivers resulting in the ability to cluster them and deploy control strategies based on contextual intelligence and datadriven approach. The proposed approach uses the probability density function (PDF) driven by kernel density estimation (KDE) as a probabilistic approach to predict the type of the upcoming journey, expressed as duration and distance. Using the proposed method, the mathematical formulation and programming algorithm procedure have been indicated in detail, while the case study examples with the data visualisation are given for algorithm validation in simulation.
dc.description.sponsorshipaiR-FORCE project, funded as Proof of Concept by the Institute of Digital Engineering
dc.language.isoenen
dc.subjectDriver behaviour modelling
dc.subjectProbability density function
dc.subjectKernel density estimation
dc.subjectProbabilistic predictions
dc.titleDriver Behaviour Modelling: Travel Prediction Using Probability Density Function
dc.status.refereedYes
dc.date.application2021-11-18
dc.typeConference paper
dc.type.versionNo full-text in the repository
dc.identifier.doihttps://doi.org/10.1007/978-3-030-87094-2_48
dc.date.updated2021-12-10T17:22:43Z
refterms.dateFOA2021-12-21T14:39:49Z
dc.openaccess.statusclosedAccess
dc.date.accepted2021-09-10


Item file(s)

Thumbnail
Name:
uglanov_et_al_2021.pdf
Size:
463.2Kb
Format:
PDF
Thumbnail
Name:
Uglanov2022_Chapter_DriverBeha ...
Size:
1.430Mb
Format:
PDF
Description:
Keep suppressed - version of record

This item appears in the following Collection(s)

Show simple item record