BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    tambuwal_and_neagu_2021 (2.234Mb)
    Download
    Publication date
    2021-09-30
    Author
    Tambuwal, Ahmad I.
    Neagu, Daniel
    Keyword
    Time-series
    Anomaly detection
    Prediction interval
    Deep neural networks
    Long short-term memory
    Quantile regression
    Rights
    (c) 2021 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/)
    Peer-Reviewed
    Yes
    Open Access status
    Gold
    
    Metadata
    Show full item record
    Abstract
    Time-series anomaly detection receives increasing research interest given the growing number of data-rich application domains. Recent additions to anomaly detection methods in research literature include deep neural networks (DNNs: e.g., RNN, CNN, and Autoencoder). The nature and performance of these algorithms in sequence analysis enable them to learn hierarchical discriminative features and time-series temporal nature. However, their performance is affected by usually assuming a Gaussian distribution on the prediction error, which is either ranked, or threshold to label data instances as anomalous or not. An exact parametric distribution is often not directly relevant in many applications though. This will potentially produce faulty decisions from false anomaly predictions due to high variations in data interpretation. The expectations are to produce outputs characterized by a level of confidence. Thus, implementations need the Prediction Interval (PI) that quantify the level of uncertainty associated with the DNN point forecasts, which helps in making better-informed decision and mitigates against false anomaly alerts. An effort has been made in reducing false anomaly alerts through the use of quantile regression for identification of anomalies, but it is limited to the use of quantile interval to identify uncertainties in the data. In this paper, an improve time-series anomaly detection method called deep quantile regression anomaly detection (DQR-AD) is proposed. The proposed method go further to used quantile interval (QI) as anomaly score and compare it with threshold to identify anomalous points in time-series data. The tests run of the proposed method on publicly available anomaly benchmark datasets demonstrate its effective performance over other methods that assumed Gaussian distribution on the prediction or reconstruction cost for detection of anomalies. This shows that our method is potentially less sensitive to data distribution than existing approaches.
    URI
    http://hdl.handle.net/10454/18658
    Version
    Published version
    Citation
    Tambuwal AI and Neagu D (2021) Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series. SN Computer Science. 2: 475.
    Link to publisher’s version
    https://doi.org/10.1007/s42979-021-00866-4
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.